Comptes Rendus
Homological Algebra
Tilting preserves finite global dimension
Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 563-570.

Given a tilting object of the derived category of an abelian category of finite global dimension, we give (under suitable finiteness conditions) a bound for the global dimension of its endomorphism ring.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.72
Classification : 18G80, 18G20

Bernhard Keller 1; Henning Krause 2

1 Université de Paris, UFR de Mathématiques, Institut de Mathématiques de Jussieu–PRG, UMR 7586 du CNRS, Case 7012, Bâtiment Sophie Germain, 75205 Paris Cedex 13, France
2 Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_5_563_0,
     author = {Bernhard Keller and Henning Krause},
     title = {Tilting preserves finite global dimension},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {563--570},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {5},
     year = {2020},
     doi = {10.5802/crmath.72},
     language = {en},
}
TY  - JOUR
AU  - Bernhard Keller
AU  - Henning Krause
TI  - Tilting preserves finite global dimension
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 563
EP  - 570
VL  - 358
IS  - 5
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.72
LA  - en
ID  - CRMATH_2020__358_5_563_0
ER  - 
%0 Journal Article
%A Bernhard Keller
%A Henning Krause
%T Tilting preserves finite global dimension
%J Comptes Rendus. Mathématique
%D 2020
%P 563-570
%V 358
%N 5
%I Académie des sciences, Paris
%R 10.5802/crmath.72
%G en
%F CRMATH_2020__358_5_563_0
Bernhard Keller; Henning Krause. Tilting preserves finite global dimension. Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 563-570. doi : 10.5802/crmath.72. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.72/

[1] Lidia Angeleri Hügel; Dieter Happel; Henning Krause Handbook of tilting theory, London Mathematical Society Lecture Note Series, 332, Cambridge University Press, 2007 | MR | Zbl

[2] Dagmar Baer Tilting sheaves in representation theory of algebras, Manuscr. Math., Volume 60 (1988) no. 3, pp. 323-347 | DOI | MR | Zbl

[3] Alexander A. Beĭlinson Coherent sheaves on P n and problems in linear algebra, Funkts. Anal. Prilozh., Volume 12 (1978) no. 3, pp. 68-69 | MR

[4] Alexander A. Beĭlinson; Joseph Bernstein; Pierre Deligne Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Société Mathématique de France, 1982, pp. 5-171 | Numdam | MR | Zbl

[5] Pierre Deligne Cohomologie Etale. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4) (A. Dold; B. Eckmann, eds.) (Lecture Notes in Mathematics), Volume 305, Springer, 1973 (Avec la collaboration de J.-F. Boutot, A. Grothendieck, L. Illusie et J.-L. Verdier)

[6] Peter Gabriel Des catégories abéliennes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 323-448 | DOI | Numdam | Zbl

[7] Peter Gabriel; Andrei V. Roĭter Representations of finite-dimensional algebras, Encyclopaedia of Mathematical Sciences, 73, Springer, 1992, pp. 1-177 (With a chapter by B. Keller) | MR

[8] Werner Geigle; Helmut Lenzing A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) (Lecture Notes in Mathematics), Volume 1273, Springer, 1987, pp. 265-297 | DOI | MR | Zbl

[9] Dieter Happel Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119, Cambridge University Press, 1988 | MR | Zbl

[10] Dieter Happel Hochschild cohomology of finite-dimensional algebras, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, Proceedings, Paris 1987–1988 (39ème Année) (Lecture Notes in Mathematics), Volume 1404 (1989), pp. 108-126 | DOI | MR | Zbl

[11] Mikhail M. Kapranov On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math., Volume 92 (1988) no. 3, pp. 479-508 | DOI | MR | Zbl

[12] Masaki Kashiwara; Pierre Schapira Categories and sheaves, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006 | MR | Zbl

[13] Bernhard Keller Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | Numdam | MR | Zbl

[14] Bernhard Keller Derived categories and their uses, Handbook of algebra. Vol. 1, Volume 1, North-Holland, 1996, pp. 671-701 | DOI | MR | Zbl

[15] Bernhard Keller Hochschild cohomology and derived Picard groups, J. Pure Appl. Algebra, Volume 190 (2004) no. 1-3, pp. 177-196 | DOI | MR | Zbl

[16] Bernhard Keller; Pedro Nicolás Weight structures and simple dg modules for positive dg algebras, Int. Math. Res. Not., Volume 2013 (2013) no. 5, pp. 1028-1078 | DOI | MR | Zbl

[17] Bernhard Keller; Dieter Vossieck Sous les catégories dérivées, C. R. Math. Acad. Sci. Paris, Volume 305 (1987) no. 6, pp. 225-228 | Zbl

[18] Henning Krause The stable derived category of a Noetherian scheme, Compos. Math., Volume 141 (2005) no. 5, pp. 1128-1162 | DOI | MR | Zbl

[19] Helmut Lenzing Hereditary categories, Handbook of tilting theory (Lidia Angeleri Hügel, ed.) (London Mathematical Society Lecture Note Series), Volume 332, Cambridge University Press, 2007, pp. 105-146 | DOI | MR

[20] Masayoshi Nagata Local rings, Interscience Tracts in Pure and Applied Mathematics, 13, Interscience Publishers; John Wiley & Sons, 1962 | MR | Zbl

[21] Jeremy Rickard Morita theory for derived categories, J. Lond. Math. Soc., Volume 39 (1989) no. 3, pp. 436-456 | DOI | MR | Zbl

[22] Jeremy Rickard Derived equivalences as derived functors, J. Lond. Math. Soc., Volume 43 (1991) no. 1, pp. 37-48 | DOI | MR | Zbl

Cited by Sources:

Comments - Politique