Comptes Rendus
Article de recherche - Algèbre
Automorphism group of B¯
[Groupe d’automorphismes de B¯]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 723-737.

Let G be a simple algebraic group of adjoint type over the field of complex numbers, different from PSL(2,C). Let G¯ be the wonderful compactification of G constructed by C. De Concini and C. Procesi. Let B¯ be the scheme theoretic closure of a Borel subgroup B of G in G¯. Then we prove that the connected component, containing the identity automorphism of the group of all algebraic automorphisms of B¯ is B×B.

Soit G un groupe algébrique simple de type adjoint sur le corps des nombres complexes, différent de PSL(2,C). Soit G¯ la compactification magnifique de G construite par C. De Concini et C. Procesi. Soit B¯ l’adhérence de Zariski d’un sous-groupe borélien B de G dans G¯. Nous prouvons que la composante connexe, contenant l’automorphisme identitaire du groupe de tous les automorphismes algébriques de B¯ est B×B.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.742
Classification : 14L10, 14L30
Keywords: Automorphism groups, wonderful compactification, unipotent group
Mots-clés : Groupes d’automorphismes, compactification magnifique, groupe unipotent

Senthamarai Kannan Subramaniam 1 ; Aisha Negi 1

1 Chennai Mathematical Institute, Plot H1, SIPCOT IT Park, Siruseri, Kelambakkam, 603103, India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G8_723_0,
     author = {Senthamarai Kannan Subramaniam and Aisha Negi},
     title = {Automorphism group of $\bar{B}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {723--737},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.742},
     language = {en},
}
TY  - JOUR
AU  - Senthamarai Kannan Subramaniam
AU  - Aisha Negi
TI  - Automorphism group of $\bar{B}$
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 723
EP  - 737
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.742
LA  - en
ID  - CRMATH_2025__363_G8_723_0
ER  - 
%0 Journal Article
%A Senthamarai Kannan Subramaniam
%A Aisha Negi
%T Automorphism group of $\bar{B}$
%J Comptes Rendus. Mathématique
%D 2025
%P 723-737
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.742
%G en
%F CRMATH_2025__363_G8_723_0
Senthamarai Kannan Subramaniam; Aisha Negi. Automorphism group of $\bar{B}$. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 723-737. doi : 10.5802/crmath.742. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.742/

[1] Dmitri N. Akhiezer Lie group actions in complex analysis, Aspects of Mathematics, E27, Vieweg & Sohn, 1995, viii+201 pages | DOI | MR | Zbl

[2] Indranil Biswas; Subramaniam Senthamarai Kannan; Donihakalu Shankar Nagaraj Automorphisms of T¯, C. R. Math., Volume 353 (2015) no. 9, pp. 785-787 | DOI | Numdam | MR | Zbl

[3] Michel Brion The total coordinate ring of a wonderful variety, J. Algebra, Volume 313 (2007) no. 1, pp. 61-99 | DOI | MR | Zbl

[4] Michel Brion; Patrick Polo Large Schubert varieties, Represent. Theory, Volume 4 (2000), pp. 97-126 | DOI | MR | Zbl

[5] David A. Cox; John B. Little; Henry K. Schenck Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011, xxiv+841 pages | DOI | MR | Zbl

[6] Corrado De Concini; Claudio Procesi Complete symmetric varieties, Invariant theory (Montecatini, 1982) (Lecture Notes in Mathematics), Volume 996, Springer, 1983, pp. 1-44 | DOI | MR | Zbl

[7] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR | Zbl

[8] James E. Humphreys Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer, 1975, xiv+247 pages | MR | Zbl

[9] James E. Humphreys Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer, 1978, xii+171 pages (Second printing, revised) | MR | Zbl

[10] Friedrich Knop; Hanspeter Kraft; Domingo Luna; Thierry Vust Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie (DMV Seminar), Volume 13, Birkhäuser, 1989, pp. 63-75 | DOI | MR | Zbl

[11] Hideyuki Matsumura; Frans Oort Representability of group functors, and automorphisms of algebraic schemes, Invent. Math., Volume 4 (1967), pp. 1-25 | DOI | MR | Zbl

[12] Subramaniam Senthamarai Kannan Projective normality of the wonderful compactification of semisimple adjoint groups, Math. Z., Volume 239 (2002) no. 4, pp. 673-682 | MR | Zbl

[13] Tonny Albert Springer Linear algebraic groups, Progress in Mathematics, 9, Birkhäuser, 1998, xiv+334 pages | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique