Comptes Rendus
Group theory/Algebraic geometry
Automorphisms of T
[Automorphismes de T]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 785-787.

Soit G la compactification magnifique d'un groupe algébrique affine G défini sur C, dont le centre est trivial et tel que GPSL(2,C). Soit TG un tore maximal, et soit T son adhérence dans G. Nous montrons que T est égal à la composante connexe contenant l'élément neutre du groupe d'automorphismes de la variété T.

Let G be the wonderful compactification of a simple affine algebraic group G defined over C such that its center is trivial and GPSL(2,C). Take a maximal torus TG, and denote by T its closure in G. We prove that T coincides with the connected component, containing the identity element, of the group of automorphisms of the variety T.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.06.006

Indranil Biswas 1 ; Subramaniam Senthamarai Kannan 2 ; Donihakalu Shankar Nagaraj 3

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
2 Chennai Mathematical Institute, H1, SIPCOT IT Park, Siruseri, Kelambakkam 603103, India
3 The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
@article{CRMATH_2015__353_9_785_0,
     author = {Indranil Biswas and Subramaniam Senthamarai Kannan and Donihakalu Shankar Nagaraj},
     title = {Automorphisms of $ \stackrel{‾}{T}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {785--787},
     publisher = {Elsevier},
     volume = {353},
     number = {9},
     year = {2015},
     doi = {10.1016/j.crma.2015.06.006},
     language = {en},
}
TY  - JOUR
AU  - Indranil Biswas
AU  - Subramaniam Senthamarai Kannan
AU  - Donihakalu Shankar Nagaraj
TI  - Automorphisms of $ \stackrel{‾}{T}$
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 785
EP  - 787
VL  - 353
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2015.06.006
LA  - en
ID  - CRMATH_2015__353_9_785_0
ER  - 
%0 Journal Article
%A Indranil Biswas
%A Subramaniam Senthamarai Kannan
%A Donihakalu Shankar Nagaraj
%T Automorphisms of $ \stackrel{‾}{T}$
%J Comptes Rendus. Mathématique
%D 2015
%P 785-787
%V 353
%N 9
%I Elsevier
%R 10.1016/j.crma.2015.06.006
%G en
%F CRMATH_2015__353_9_785_0
Indranil Biswas; Subramaniam Senthamarai Kannan; Donihakalu Shankar Nagaraj. Automorphisms of $ \stackrel{‾}{T}$. Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 785-787. doi : 10.1016/j.crma.2015.06.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.06.006/

[1] M. Brion; R. Joshua Equivariant Chow ring and Chern classes of wonderful symmetric varieties of minimal rank, Transform. Groups, Volume 13 (2008), pp. 471-493

[2] C. De Concini; C. Procesi Complete symmetric varieties, Montecatini, 1982 (Lect. Notes Math.), Volume vol. 996, Springer, Berlin (1983), pp. 1-44

[3] M. Demazure Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. Éc. Norm. Super. (4), Volume 3 (1970), pp. 507-588

[4] A. Grothendieck Techniques de construction et théorèmes d'existence en géométrie algébrique IV, les schémas de Hilbert, Séminaire Bourbaki, Volume 5 (1960–1961) (Exposé no. 221, 28 p)

[5] J.E. Humphreys Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1972

[6] J.E. Humphreys Linear Algebraic Groups, Grad. Texts Math., vol. 21, Springer-Verlag, Berlin, Heidelberg, New York, 1975

[7] F. Knop; H. Kraft; T. Vust The Picard group of a G-variety, Algebraische Transformationsgruppen und Invariantentheorie, DMV-Semin., vol. 13, Birkhäuser, Basel, Switzerland, 1989, pp. 77-87 14C22 (14D25 14L30)

[8] H. Matsumura; F. Oort Representability of group functors, and automorphisms of algebraic schemes, Invent. Math., Volume 4 (1967), pp. 1-25

Cité par Sources :

Commentaires - Politique