[Un autre point de vue sur les propriétés qualitatives des valeurs propres via les hamiltoniens effectifs]
The goal of this paper is to review several qualitative properties of well-known eigenvalue problems using a different perspective based on the theory of effective Hamiltonians, working exclusively on the Hopf–Cole transform of the equation. We revisit some monotonicity results as well as the derivation of several scaling limits by means of the Donsker–Varadhan formula, and we point out several differences between the case of quadratic Hamiltonians and non-quadratic ones.
L’objectif de ce papier est de passer en revue plusieurs propriétés qualitatives de problèmes spectraux bien connus en utilisant une autre perspective, celles de hamiltoniens effectifs, en travaillant uniquement sur la transformée de Hopf–Cole de l’équation. Nous revisitons certains résultats de monotonie et de comportements asymptotiques en utilisant la formule de Donsker–Varadhan, et nous mettons en lumière plusieurs différences fondamentales entre les hamiltoniens quadratiques, et ceux qui ne le sont pas.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Hamiltonien effectif, valeur propre principale, optimisation spectrale
Idriss Mazari-Fouquer 1

@article{CRMATH_2025__363_G7_677_0, author = {Idriss Mazari-Fouquer}, title = {Another look at qualitative properties of eigenvalues using effective {Hamiltonians}}, journal = {Comptes Rendus. Math\'ematique}, pages = {677--693}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.747}, language = {en}, }
Idriss Mazari-Fouquer. Another look at qualitative properties of eigenvalues using effective Hamiltonians. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 677-693. doi : 10.5802/crmath.747. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.747/
[1] A counterexample for the principal eigenvalue of an elliptic operator with large advection (2023) | arXiv | Zbl
[2] Asymptotic behavior of viscosity solutions of first Hamilton Jacobi equations, Ric. Mat., Volume 34 (1985) no. 2, pp. 227-260 | MR | Zbl
[3] Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal., Volume 32 (2001) no. 6, pp. 1311-1323 | DOI | MR | Zbl
[4] On the principal eigenvalue of a periodic-parabolic operator, Commun. Partial Differ. Equations, Volume 9 (1984) no. 9, pp. 919-941 | DOI | MR | Zbl
[5] Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Commun. Math. Phys., Volume 253 (2005) no. 2, pp. 451-480 | DOI | MR | Zbl
[6] Convergence to time-periodic solutions in time-periodic Hamilton–Jacobi equations on the circle, Commun. Partial Differ. Equations, Volume 29 (2004) no. 3-4, pp. 457-469 | DOI | MR | Zbl
[7] Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a non-ergodic approach, SIAM J. Appl. Dyn. Syst., Volume 18 (2019) no. 4, pp. 1846-1866 | DOI | MR | Zbl
[8] Influence of mutations in phenotypically-structured populations in time periodic environment, Discrete Contin. Dyn. Syst., Ser. B, Volume 25 (2020) no. 9, pp. 3609-3630 | DOI | MR | Zbl
[9] Ergodic problems for viscous Hamilton–Jacobi equations with inward drift, SIAM J. Control Optim., Volume 57 (2019) no. 1, pp. 23-52 | DOI | MR | Zbl
[10] Weak solutions of the Hamilton–Jacobi equation for time periodic Lagrangians (2013) | arXiv | Zbl
[11] Periodic-parabolic eigenvalue problems with indefinite weight functions, Arch. Math., Volume 68 (1997) no. 5, pp. 388-397 | DOI | MR | Zbl
[12] Existence and perturbation of principal eigenvalues for a periodic-parabolic problem, Proceedings of the Conference on Nonlinear Differential Equations (Coral Gables, FL, 1999) (Electronic Journal of Differential Equations Conference), Texas State Univ., 2000 no. 5, pp. 51-67 | MR | Zbl
[13] On a variational formula for the principal eigenvalue for operators with maximum principle, Proc. Natl. Acad. Sci. USA, Volume 72 (1975), pp. 780-783 | DOI | MR | Zbl
[14] On the principal eigenvalue of elliptic second order differential operators, Proceedings of the International Symposium on Stochastic Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976) (A Wiley-Interscience Publication), John Wiley & Sons, 1978, pp. 41-47 | MR | Zbl
[15] Effective Hamiltonians and averaging for Hamiltonian dynamics. I, Arch. Ration. Mech. Anal., Volume 157 (2001) no. 1, pp. 1-33 | DOI | MR | Zbl
[16] Weak KAM theory: the connection between Aubry–Mather theory and viscosity solutions of the Hamilton–Jacobi equation, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, KM Kyung Moon Sa, 2014, pp. 597-621 | MR | Zbl
[17] Periodic-parabolic boundary value problems and positivity, Pitman Research Notes in Mathematics Series, 247, Longman Scientific & Technical, 1991, viii+139 pages | MR | Zbl
[18] Estimates for the principal spectrum point for certain time-dependent parabolic operators, Proc. Am. Math. Soc., Volume 129 (2001) no. 6, pp. 1669-1679 | DOI | MR | Zbl
[19] Introduction to reaction-diffusion equations. Theory and applications to spatial ecology and evolutionary biology, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, 2022, xvi+312 pages | DOI | Zbl
[20] Homogenization of Hamilton–Jacobi equation (1987) http://localwww.math.unipd.it/...
[21] A functional approach towards eigenvalue problems associated with incompressible flow, Discrete Contin. Dyn. Syst., Volume 40 (2020) no. 6, pp. 3715-3736 | DOI | MR | Zbl
[22] Monotonicity, asymptotics and level sets for principal eigenvalues of some elliptic operators with shear flow, J. Math. Pures Appl. (9), Volume 191 (2024), 103622, 42 pages | DOI | MR | Zbl
[23] Monotonicity of the principal eigenvalue for a linear time-periodic parabolic operator, Proc. Am. Math. Soc., Volume 147 (2019) no. 12, pp. 5291-5302 | DOI | MR | Zbl
[24] Subsolutions of time-periodic Hamilton–Jacobi equations, Ergodic Theory Dyn. Syst., Volume 27 (2007) no. 4, pp. 1253-1265 | DOI | MR | Zbl
[25] Remarks on the long time behaviour of the solutions of Hamilton–Jacobi equations, Commun. Partial Differ. Equations, Volume 24 (1999) no. 5-6, pp. 883-893 | DOI | MR | Zbl
[26] Convergence to steady states or periodic solutions in a class of Hamilton–Jacobi equations, J. Math. Pures Appl. (9), Volume 80 (2001) no. 1, pp. 85-104 | DOI | MR | Zbl
[27] Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Relat. Fields, Volume 8 (2002) no. 2, pp. 163-198 | MR | Zbl
Cité par Sources :
Commentaires - Politique