Comptes Rendus
Article de recherche - Théorie des singularités
Atypical values at infinity of real polynomial maps with $2$-dimensional fibers
[Valeurs atypiques à l’infini des applications polynomiales réelles à fibres bidimensionnelles]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 917-932

We characterize atypical values at infinity of a real polynomial function of three variables by a certain sum of indices of the gradient vector field of the function restricted to a sphere with a sufficiently large radius. This is a three-variable analogue of a result of Coste and de la Puente for real polynomial functions with two variables. We also give a characterization of atypical values at infinity of a real polynomial map whose regular fibers are $2$-dimensional surfaces.

Nous caractérisons les valeurs atypiques à l’infini d’une fonction polynomiale réelle de trois variables par une certaine somme d’indices du champ de vecteurs gradient de la fonction restreint à une sphère de rayon suffisamment grand. Il s’agit d’un analogue à trois variables d’un résultat de Coste et de la Puente pour les fonctions polynomiales réelles à deux variables. Nous donnons également une caractérisation des valeurs atypiques à l’infini d’une application polynomiale réelle dont les fibres régulières sont des surfaces bidimensionnelles.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.761
Classification : 58K15, 58K05, 58K30, 58K45
Keywords: Polynomial map, singularity at infinity, atypical fiber, bifurcation set
Mots-clés : Application polynomiale, singularité à l’infini, fibre atypique, ensemble de bifurcation

Masaharu Ishikawa 1 ; Tat-Thang Nguyen 2

1 Faculty of Economics, Keio University, 4-1-1, Hiyoshi, Kouhoku, Yokohama, Kanagawa 223-8521, Japan
2 Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, 10072 Hanoi, Vietnam
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G9_917_0,
     author = {Masaharu Ishikawa and Tat-Thang Nguyen},
     title = {Atypical values at infinity of real polynomial maps with $2$-dimensional fibers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {917--932},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.761},
     language = {en},
}
TY  - JOUR
AU  - Masaharu Ishikawa
AU  - Tat-Thang Nguyen
TI  - Atypical values at infinity of real polynomial maps with $2$-dimensional fibers
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 917
EP  - 932
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.761
LA  - en
ID  - CRMATH_2025__363_G9_917_0
ER  - 
%0 Journal Article
%A Masaharu Ishikawa
%A Tat-Thang Nguyen
%T Atypical values at infinity of real polynomial maps with $2$-dimensional fibers
%J Comptes Rendus. Mathématique
%D 2025
%P 917-932
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.761
%G en
%F CRMATH_2025__363_G9_917_0
Masaharu Ishikawa; Tat-Thang Nguyen. Atypical values at infinity of real polynomial maps with $2$-dimensional fibers. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 917-932. doi: 10.5802/crmath.761

[1] Jacek Bochnak; Michel Coste; Marie-Françoise Roy Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 36, Springer, 1998, x+430 pages | DOI | MR | Zbl

[2] Sean Allen Broughton On the topology of polynomial hypersurfaces, Singularities, Part 1 (Arcata, Calif., 1981) (Proceedings of Symposia in Pure Mathematics), Volume 40, American Mathematical Society, 1983, pp. 167-178 | DOI | MR | Zbl

[3] Michel Coste; María Jesús de la Puente Atypical values at infinity of a polynomial function on the real plane: an erratum, and an algorithmic criterion, J. Pure Appl. Algebra, Volume 162 (2001) no. 1, pp. 23-35 | DOI | MR | Zbl

[4] Luis Renato G. Dias; Cezar Joiţa; Mihai Tibăr Atypical points at infinity and algorithmic detection of the bifurcation locus of real polynomials, Math. Z., Volume 298 (2021) no. 3-4, pp. 1545-1558 | DOI | MR | Zbl

[5] Luis Renato G. Dias; Mihai Tibăr Detecting bifurcation values at infinity of real polynomials, Math. Z., Volume 279 (2015) no. 1-2, pp. 311-319 | DOI | MR | Zbl

[6] Huy-Vui Hà; Tiê’n-So’n Pham On the Łojasiewicz exponent at infinity of real polynomials, Ann. Pol. Math., Volume 94 (2008) no. 3, pp. 197-208 | DOI | MR | Zbl

[7] Huy-Vui Hà; Tiê’n-So’n Pham Genericity in polynomial optimization, Series on Optimization and its Applications, 3, World Scientific, 2017, xix+240 pages | DOI | MR | Zbl

[8] Masaharu Ishikawa; Tat-Thang Nguyen Relative homotopy groups and Serre fibrations for polynomial maps (2023) (To appear in J. Math. Soc. Japan) | arXiv

[9] Masaharu Ishikawa; Tat-Thang Nguyen; Tiê’n-So’n Pham Bifurcation sets of real polynomial functions of two variables and Newton polygons, J. Math. Soc. Japan, Volume 71 (2019) no. 4, pp. 1201-1222 | DOI | MR | Zbl

[10] Zbigniew Jelonek; Krzysztof Kurdyka Reaching generalized critical values of a polynomial, Math. Z., Volume 276 (2014) no. 1-2, pp. 557-570 | DOI | MR | Zbl

[11] Cezar Joiţa; Mihai Tibăr Bifurcation values of families of real curves, Proc. R. Soc. Edinb., Sect. A, Math., Volume 147 (2017) no. 6, pp. 1233-1242 | DOI | MR | Zbl

[12] Cezar Joiţa; Mihai Tibăr Bifurcation set of multi-parameter families of complex curves, J. Topol., Volume 11 (2018) no. 3, pp. 739-751 | DOI | MR | Zbl

[13] Krzysztof Kurdyka; Patrice Orro; Stéphane Simon Semialgebraic Sard theorem for generalized critical values, J. Differ. Geom., Volume 56 (2000) no. 1, pp. 67-92 | MR | Zbl

[14] Gaël Meigniez Submersions, fibrations and bundles, Trans. Am. Math. Soc., Volume 354 (2002) no. 9, pp. 3771-3787 | DOI | MR | Zbl

[15] John Willard Milnor Morse theory, Annals of Mathematics Studies, 51, Princeton University Press, 1963, vi+153 pages | MR | DOI | Zbl

[16] René Thom Ensembles et morphismes stratifiés, Bull. Am. Math. Soc., Volume 75 (1969), pp. 240-284 | DOI | MR | Zbl

[17] Mihai Tibăr; Alexandru Zaharia Asymptotic behaviour of families of real curves, Manuscr. Math., Volume 99 (1999) no. 3, pp. 383-393 | DOI | MR | Zbl

[18] Jean-Louis Verdier Stratifications de Whitney et théorème de Bertini–Sard, Invent. Math., Volume 36 (1976), pp. 295-312 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique