[Valeurs atypiques à l’infini des applications polynomiales réelles à fibres bidimensionnelles]
We characterize atypical values at infinity of a real polynomial function of three variables by a certain sum of indices of the gradient vector field of the function restricted to a sphere with a sufficiently large radius. This is a three-variable analogue of a result of Coste and de la Puente for real polynomial functions with two variables. We also give a characterization of atypical values at infinity of a real polynomial map whose regular fibers are $2$-dimensional surfaces.
Nous caractérisons les valeurs atypiques à l’infini d’une fonction polynomiale réelle de trois variables par une certaine somme d’indices du champ de vecteurs gradient de la fonction restreint à une sphère de rayon suffisamment grand. Il s’agit d’un analogue à trois variables d’un résultat de Coste et de la Puente pour les fonctions polynomiales réelles à deux variables. Nous donnons également une caractérisation des valeurs atypiques à l’infini d’une application polynomiale réelle dont les fibres régulières sont des surfaces bidimensionnelles.
Révisé le :
Accepté le :
Publié le :
Keywords: Polynomial map, singularity at infinity, atypical fiber, bifurcation set
Mots-clés : Application polynomiale, singularité à l’infini, fibre atypique, ensemble de bifurcation
Masaharu Ishikawa 1 ; Tat-Thang Nguyen 2
CC-BY 4.0
@article{CRMATH_2025__363_G9_917_0,
author = {Masaharu Ishikawa and Tat-Thang Nguyen},
title = {Atypical values at infinity of real polynomial maps with $2$-dimensional fibers},
journal = {Comptes Rendus. Math\'ematique},
pages = {917--932},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.761},
language = {en},
}
TY - JOUR AU - Masaharu Ishikawa AU - Tat-Thang Nguyen TI - Atypical values at infinity of real polynomial maps with $2$-dimensional fibers JO - Comptes Rendus. Mathématique PY - 2025 SP - 917 EP - 932 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.761 LA - en ID - CRMATH_2025__363_G9_917_0 ER -
Masaharu Ishikawa; Tat-Thang Nguyen. Atypical values at infinity of real polynomial maps with $2$-dimensional fibers. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 917-932. doi: 10.5802/crmath.761
[1] Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 36, Springer, 1998, x+430 pages | DOI | MR | Zbl
[2] On the topology of polynomial hypersurfaces, Singularities, Part 1 (Arcata, Calif., 1981) (Proceedings of Symposia in Pure Mathematics), Volume 40, American Mathematical Society, 1983, pp. 167-178 | DOI | MR | Zbl
[3] Atypical values at infinity of a polynomial function on the real plane: an erratum, and an algorithmic criterion, J. Pure Appl. Algebra, Volume 162 (2001) no. 1, pp. 23-35 | DOI | MR | Zbl
[4] Atypical points at infinity and algorithmic detection of the bifurcation locus of real polynomials, Math. Z., Volume 298 (2021) no. 3-4, pp. 1545-1558 | DOI | MR | Zbl
[5] Detecting bifurcation values at infinity of real polynomials, Math. Z., Volume 279 (2015) no. 1-2, pp. 311-319 | DOI | MR | Zbl
[6] On the Łojasiewicz exponent at infinity of real polynomials, Ann. Pol. Math., Volume 94 (2008) no. 3, pp. 197-208 | DOI | MR | Zbl
[7] Genericity in polynomial optimization, Series on Optimization and its Applications, 3, World Scientific, 2017, xix+240 pages | DOI | MR | Zbl
[8] Relative homotopy groups and Serre fibrations for polynomial maps (2023) (To appear in J. Math. Soc. Japan) | arXiv
[9] Bifurcation sets of real polynomial functions of two variables and Newton polygons, J. Math. Soc. Japan, Volume 71 (2019) no. 4, pp. 1201-1222 | DOI | MR | Zbl
[10] Reaching generalized critical values of a polynomial, Math. Z., Volume 276 (2014) no. 1-2, pp. 557-570 | DOI | MR | Zbl
[11] Bifurcation values of families of real curves, Proc. R. Soc. Edinb., Sect. A, Math., Volume 147 (2017) no. 6, pp. 1233-1242 | DOI | MR | Zbl
[12] Bifurcation set of multi-parameter families of complex curves, J. Topol., Volume 11 (2018) no. 3, pp. 739-751 | DOI | MR | Zbl
[13] Semialgebraic Sard theorem for generalized critical values, J. Differ. Geom., Volume 56 (2000) no. 1, pp. 67-92 | MR | Zbl
[14] Submersions, fibrations and bundles, Trans. Am. Math. Soc., Volume 354 (2002) no. 9, pp. 3771-3787 | DOI | MR | Zbl
[15] Morse theory, Annals of Mathematics Studies, 51, Princeton University Press, 1963, vi+153 pages | MR | DOI | Zbl
[16] Ensembles et morphismes stratifiés, Bull. Am. Math. Soc., Volume 75 (1969), pp. 240-284 | DOI | MR | Zbl
[17] Asymptotic behaviour of families of real curves, Manuscr. Math., Volume 99 (1999) no. 3, pp. 383-393 | DOI | MR | Zbl
[18] Stratifications de Whitney et théorème de Bertini–Sard, Invent. Math., Volume 36 (1976), pp. 295-312 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique
