[Formes de Fubini–Study sur des surfaces de Riemann épointées]
In this paper we consider a punctured Riemann surface endowed with a Hermitian metric that equals the Poincaré metric near the punctures, and a holomorphic line bundle that polarizes the metric. We show that the quotient of the induced Fubini–Study forms by Kodaira maps of high tensor powers of the line bundle and the Poincaré form near the singularity grows polynomially uniformly on a neighborhood of the singularity as the tensor power tends to infinity, as an application of the method in [5].
Dans cet article, nous considérons une surface de Riemann épointée munie d’une métrique hermitienne qui coïncide avec la métrique de Poincaré près des points de ponction, ainsi qu’un fibré en droites holomorphe qui polarise la métrique. Nous montrons que le quotient des formes induites de Fubini–Study par les applications de Kodaira des puissances tensorielles élevées du fibré en droites et de la forme de Poincaré près de la singularité croît de manière polynomiale et uniforme dans un voisinage de la singularité lorsque la puissance tensorielle tend vers l’infini, en application de la méthode décrite dans [5].
Révisé le :
Accepté le :
Publié le :
Razvan Apredoaei 1 ; Xiaonan Ma 2 ; Lei Wang 3

@article{CRMATH_2025__363_G6_603_0, author = {Razvan Apredoaei and Xiaonan Ma and Lei Wang}, title = {Fubini{\textendash}Study forms on punctured {Riemann} surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {603--615}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.763}, language = {en}, }
Razvan Apredoaei; Xiaonan Ma; Lei Wang. Fubini–Study forms on punctured Riemann surfaces. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 603-615. doi : 10.5802/crmath.763. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.763/
[1] Estimates of automorphic forms on
[2] Estimates of Kähler metrics on noncompact finite volume hyperbolic Riemann surfaces, and their symmetric products, Ann. Global Anal. Geom., Volume 66 (2024) no. 3, 11, 16 pages | DOI | MR | Zbl
[3] Bergman kernels on punctured Riemann surfaces, C. R. Math., Volume 354 (2016) no. 10, pp. 1018-1022 | DOI | Numdam | MR | Zbl
[4] Bergman kernels on punctured Riemann surfaces, Math. Ann., Volume 379 (2021) no. 3-4, pp. 951-1002 | DOI | MR | Zbl
[5] Quotient of Bergman kernels on punctured Riemann surfaces, Math. Z., Volume 301 (2022) no. 3, pp. 2339-2367 | DOI | MR | Zbl
[6] The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997) (Trends in Mathematics), Birkhäuser, 1999, pp. 1-23 | MR | Zbl
[7] On the asymptotic expansion of Bergman kernel, J. Differ. Geom., Volume 72 (2006) no. 1, pp. 1-41 | MR | Zbl
[8] Scalar curvature and projective embeddings. I, J. Differ. Geom., Volume 59 (2001) no. 3, pp. 479-522 | MR | Zbl
[9] Semiclassical Ohsawa–Takegoshi extension theorem and asymptotics of the orthogonal Bergman kernel, J. Differ. Geom., Volume 128 (2024) no. 2, pp. 639-721 | DOI | MR | Zbl
[10] Uniform sup-norm bounds on average for cusp forms of higher weights, Arbeitstagung Bonn 2013 (Progress in Mathematics), Birkhäuser/Springer, 2016 no. 319, pp. 127-154 | DOI | MR | Zbl
[11] Bounding the sup-norm of automorphic forms, Geom. Funct. Anal., Volume 14 (2004) no. 6, pp. 1267-1277 | DOI | MR | Zbl
[12] Hilbert–Mumford criterion for nodal curves, Compos. Math., Volume 151 (2015) no. 11, pp. 2076-2130 | DOI | MR | Zbl
[13] Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, 254, Birkhäuser, 2007, xiv+422 pages | DOI | MR
[14] Generalized Bergman kernels on symplectic manifolds, Adv. Math., Volume 217 (2008) no. 4, pp. 1756-1815 | DOI | MR | Zbl
[15] Points de petite hauteur sur les courbes modulaires
[16] Extremal metrics and K-stability, Ph. D. Thesis, Imperial College London (UK) (2006) | arXiv
[17] On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990) no. 1, pp. 99-130 | MR | Zbl
[18] Szegő kernels and a theorem of Tian, Int. Math. Res. Not. (1998) no. 6, pp. 317-331 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique