Comptes Rendus
Article de recherche - Analyse et géométrie complexes
Fubini–Study forms on punctured Riemann surfaces
[Formes de Fubini–Study sur des surfaces de Riemann épointées]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 603-615.

In this paper we consider a punctured Riemann surface endowed with a Hermitian metric that equals the Poincaré metric near the punctures, and a holomorphic line bundle that polarizes the metric. We show that the quotient of the induced Fubini–Study forms by Kodaira maps of high tensor powers of the line bundle and the Poincaré form near the singularity grows polynomially uniformly on a neighborhood of the singularity as the tensor power tends to infinity, as an application of the method in [5].

Dans cet article, nous considérons une surface de Riemann épointée munie d’une métrique hermitienne qui coïncide avec la métrique de Poincaré près des points de ponction, ainsi qu’un fibré en droites holomorphe qui polarise la métrique. Nous montrons que le quotient des formes induites de Fubini–Study par les applications de Kodaira des puissances tensorielles élevées du fibré en droites et de la forme de Poincaré près de la singularité croît de manière polynomiale et uniforme dans un voisinage de la singularité lorsque la puissance tensorielle tend vers l’infini, en application de la méthode décrite dans [5].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.763

Razvan Apredoaei 1 ; Xiaonan Ma 2 ; Lei Wang 3

1 Université Paris Cité, CNRS, IMJ-PRG, Bâtiment Sophie Germain, UFR de Mathématiques, Case 7012, 75205 Paris Cedex 13, France
2 Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, P. R. China
3 School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G6_603_0,
     author = {Razvan Apredoaei and Xiaonan Ma and Lei Wang},
     title = {Fubini{\textendash}Study forms on punctured {Riemann} surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {603--615},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.763},
     language = {en},
}
TY  - JOUR
AU  - Razvan Apredoaei
AU  - Xiaonan Ma
AU  - Lei Wang
TI  - Fubini–Study forms on punctured Riemann surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 603
EP  - 615
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.763
LA  - en
ID  - CRMATH_2025__363_G6_603_0
ER  - 
%0 Journal Article
%A Razvan Apredoaei
%A Xiaonan Ma
%A Lei Wang
%T Fubini–Study forms on punctured Riemann surfaces
%J Comptes Rendus. Mathématique
%D 2025
%P 603-615
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.763
%G en
%F CRMATH_2025__363_G6_603_0
Razvan Apredoaei; Xiaonan Ma; Lei Wang. Fubini–Study forms on punctured Riemann surfaces. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 603-615. doi : 10.5802/crmath.763. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.763/

[1] Anilatmaja Aryasomayajula; Baskar Balasubramanyam Estimates of automorphic forms on SU(n,1) (2024) | arXiv

[2] Anilatmaja Aryasomayajula; Arijit Mukherjee Estimates of Kähler metrics on noncompact finite volume hyperbolic Riemann surfaces, and their symmetric products, Ann. Global Anal. Geom., Volume 66 (2024) no. 3, 11, 16 pages | DOI | MR | Zbl

[3] Hugues Auvray; Xiaonan Ma; George Marinescu Bergman kernels on punctured Riemann surfaces, C. R. Math., Volume 354 (2016) no. 10, pp. 1018-1022 | DOI | Numdam | MR | Zbl

[4] Hugues Auvray; Xiaonan Ma; George Marinescu Bergman kernels on punctured Riemann surfaces, Math. Ann., Volume 379 (2021) no. 3-4, pp. 951-1002 | DOI | MR | Zbl

[5] Hugues Auvray; Xiaonan Ma; George Marinescu Quotient of Bergman kernels on punctured Riemann surfaces, Math. Z., Volume 301 (2022) no. 3, pp. 2339-2367 | DOI | MR | Zbl

[6] David Catlin The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997) (Trends in Mathematics), Birkhäuser, 1999, pp. 1-23 | MR | Zbl

[7] Xianzhe Dai; Kefeng Liu; Xiaonan Ma On the asymptotic expansion of Bergman kernel, J. Differ. Geom., Volume 72 (2006) no. 1, pp. 1-41 | MR | Zbl

[8] Simon Kirwan Donaldson Scalar curvature and projective embeddings. I, J. Differ. Geom., Volume 59 (2001) no. 3, pp. 479-522 | MR | Zbl

[9] Siarhei Finski Semiclassical Ohsawa–Takegoshi extension theorem and asymptotics of the orthogonal Bergman kernel, J. Differ. Geom., Volume 128 (2024) no. 2, pp. 639-721 | DOI | MR | Zbl

[10] Joshua S. Friedman; Jay Jorgenson; Jürg Kramer Uniform sup-norm bounds on average for cusp forms of higher weights, Arbeitstagung Bonn 2013 (Progress in Mathematics), Birkhäuser/Springer, 2016 no. 319, pp. 127-154 | DOI | MR | Zbl

[11] Jay Jorgenson; Jürg Kramer Bounding the sup-norm of automorphic forms, Geom. Funct. Anal., Volume 14 (2004) no. 6, pp. 1267-1277 | DOI | MR | Zbl

[12] Jun Li; Xiaowei Wang Hilbert–Mumford criterion for nodal curves, Compos. Math., Volume 151 (2015) no. 11, pp. 2076-2130 | DOI | MR | Zbl

[13] Xiaonan Ma; George Marinescu Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, 254, Birkhäuser, 2007, xiv+422 pages | DOI | MR

[14] Xiaonan Ma; George Marinescu Generalized Bergman kernels on symplectic manifolds, Adv. Math., Volume 217 (2008) no. 4, pp. 1756-1815 | DOI | MR | Zbl

[15] Philippe Gabriel Michel; Emmanuel Ullmo Points de petite hauteur sur les courbes modulaires X0(N), Invent. Math., Volume 131 (1998) no. 3, pp. 645-674 | DOI | MR | Zbl

[16] Gábor Székelyhidi Extremal metrics and K-stability, Ph. D. Thesis, Imperial College London (UK) (2006) | arXiv

[17] Gang Tian On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990) no. 1, pp. 99-130 | MR | Zbl

[18] Steve Zelditch Szegő kernels and a theorem of Tian, Int. Math. Res. Not. (1998) no. 6, pp. 317-331 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique