Comptes Rendus
Article de recherche - Analyse harmonique
A generic threshold phenomenon in weighted $\ell ^2$
[Un phénomène de seuil dans des espaces $\ell ^2$]
Comptes Rendus. Mathématique, Volume 364 (2026), pp. 1-11

We study threshold phenomena in weighted $\ell ^2$-spaces. Our main result is a summable Baire category version of Körner’s topological Ivashev-Musatov Theorem, which we show is optimal in several respects.

Nous étudions les phénomènes de seuil dans les espaces $\ell ^2$ pondérés. Notre résultat principal est une version du théorème topologique de Körner d’Ivashev-Musatov pour la catégorie sommable de Baire, dont nous montrons qu’il est optimal à plusieurs égards.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.775
Classification : 42A16, 42A55
Keywords: Harmonic analysis, Fourier series
Mots-clés : Analyse harmonique, séries de Fourier

Adem Limani  1

1 Centre for Mathematical Sciences, Lund University, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2026__364_G1_1_0,
     author = {Adem Limani},
     title = {A generic threshold phenomenon in weighted $\ell ^2$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1--11},
     year = {2026},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {364},
     doi = {10.5802/crmath.775},
     language = {en},
}
TY  - JOUR
AU  - Adem Limani
TI  - A generic threshold phenomenon in weighted $\ell ^2$
JO  - Comptes Rendus. Mathématique
PY  - 2026
SP  - 1
EP  - 11
VL  - 364
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.775
LA  - en
ID  - CRMATH_2026__364_G1_1_0
ER  - 
%0 Journal Article
%A Adem Limani
%T A generic threshold phenomenon in weighted $\ell ^2$
%J Comptes Rendus. Mathématique
%D 2026
%P 1-11
%V 364
%I Académie des sciences, Paris
%R 10.5802/crmath.775
%G en
%F CRMATH_2026__364_G1_1_0
Adem Limani. A generic threshold phenomenon in weighted $\ell ^2$. Comptes Rendus. Mathématique, Volume 364 (2026), pp. 1-11. doi: 10.5802/crmath.775

[1] Jean Bourgain Sidon sets and Riesz products, Ann. Inst. Fourier, Volume 35 (1985) no. 1, pp. 137-148 | Numdam | DOI | Zbl

[2] Lawrence C. Evans Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010 | DOI | MR | Zbl

[3] V. P. Havin; B. Jöricke The uncertainty principle in harmonic analysis, Encyclopaedia of Mathematical Sciences, 72, Springer, 1995 | MR

[4] Yitzhak Katznelson An introduction to harmonic analysis, Cambridge Mathematical Library, Cambridge University Press, 2004 | DOI | MR | Zbl

[5] T. W. Körner On the theorem of Ivašev-Musatov. II, Ann. Inst. Fourier, Volume 28 (1978) no. 3, pp. 123-142 | DOI | MR | Numdam

[6] T. W. Körner On the theorem of Ivašev-Musatov III, Proc. Lond. Math. Soc., Volume 3 (1986) no. 1, pp. 143-192 | Zbl | DOI | MR

[7] T. W. Körner A topological Ivašev-Musatov theorem, J. Lond. Math. Soc., Volume 67 (2003) no. 2, pp. 448-460 | DOI | Zbl | MR

[8] Adem Limani Generic measures with slowly decaying Fourier coefficients (2026) (To appear in Isr. J. Math.) | arXiv | Zbl

[9] Gilles Pisier Arithmetic characterizations of Sidon sets, Bull. Am. Math. Soc., Volume 8 (1983) no. 1, pp. 87-89 | DOI | Zbl | MR

[10] A. Zygmund Trigonometric series. Vols. I, II, Cambridge University Press, 1959 | MR | Zbl

Cité par Sources :

Commentaires - Politique