Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Nonvariational double phase problems with variable exponents depending on the gradient of the solution with convection term
[Problèmes à double phase non variationnels avec exposants variables dépendant du gradient de la solution avec terme de convection]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1277-1287

In this work, we study nonvariational double phase problems driven by a novel operator with variable exponents depending on the solutions and its gradient, along with a convection term. Using the Galerkin method, we prove the existence of solutions and apply a truncation technique to demonstrate multiplicity. Additionally, we address the uniqueness of solutions. The paper presents self-contained techniques to prove the multiplicity result, which may also be useful for addressing other problems with a convection term.

Dans ce travail, nous étudions des problèmes à double phase non variationnels gouvernés par un nouvel opérateur à exposants variables dépendant de la solution et de son gradient, auxquels s’ajoute un terme de convection. En utilisant la méthode de Galerkin, nous établissons l’existence de solutions et appliquons une technique de troncature pour démontrer la multiplicité. Nous abordons également la question de l’unicité des solutions. L’article présente des techniques autonomes permettant d’établir des résultats de multiplicité, lesquelles peuvent également être utiles pour traiter d’autres problèmes comportant un terme de convection.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.788
Classification : 35J20, 35J60, 35J70, 47J10, 46E35
Keywords: Double phase operators, multiplicity results, gradient term, variable exponents, nonvariational methods
Mots-clés : Opérateurs à double phase, résultats de multiplicité, terme en gradient, exposants variables, méthodes non variationnelles

Ala Eddine Bahrouni 1 ; Anouar Bahrouni 1

1 Mathematics Department, Faculty of Sciences, University of Monastir, 5019 Monastir, Tunisia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G12_1277_0,
     author = {Ala Eddine Bahrouni and Anouar Bahrouni},
     title = {Nonvariational double phase problems with variable exponents depending on the gradient of the solution with convection term},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1277--1287},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.788},
     language = {en},
}
TY  - JOUR
AU  - Ala Eddine Bahrouni
AU  - Anouar Bahrouni
TI  - Nonvariational double phase problems with variable exponents depending on the gradient of the solution with convection term
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 1277
EP  - 1287
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.788
LA  - en
ID  - CRMATH_2025__363_G12_1277_0
ER  - 
%0 Journal Article
%A Ala Eddine Bahrouni
%A Anouar Bahrouni
%T Nonvariational double phase problems with variable exponents depending on the gradient of the solution with convection term
%J Comptes Rendus. Mathématique
%D 2025
%P 1277-1287
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.788
%G en
%F CRMATH_2025__363_G12_1277_0
Ala Eddine Bahrouni; Anouar Bahrouni. Nonvariational double phase problems with variable exponents depending on the gradient of the solution with convection term. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1277-1287. doi: 10.5802/crmath.788

[1] Stanislav Antontsev; Ivan Kuznetsov; Sergey Shmarev On a class of nonlocal evolution equations with the p[u]-Laplace operator, J. Math. Anal. Appl., Volume 501 (2021) no. 2, 125221, 26 pages | DOI | MR | Zbl

[2] Ala Eddine Bahrouni; Anouar Bahrouni; Hlel Missaoui A new class of anisotropic double phase problems: exponents depending on solutions and their gradients (2025) | arXiv

[3] Ala Eddine Bahrouni; Anouar Bahrouni; Patrick Winkert Double phase problems with variable exponents depending on the solution and the gradient in the whole space N , Nonlinear Anal., Real World Appl., Volume 85 (2025), 104334, 28 pages | MR | DOI | Zbl

[4] Anouar Bahrouni; Vicenţiu D. Rădulescu; Dušan D. Repovš Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves, Nonlinearity, Volume 32 (2019) no. 7, pp. 2481-2495 | DOI | MR | Zbl

[5] Paolo Baroni; Maria Colombo; Giuseppe Mingione Harnack inequalities for double phase functionals, Nonlinear Anal., Theory Methods Appl., Volume 121 (2015), pp. 206-222 | DOI | MR | Zbl

[6] V. Benci; P. D’Avenia; D. Fortunato; L. Pisani Solitons in several space dimensions: Derrick’s problem and infinitely many solutions, Arch. Ration. Mech. Anal., Volume 154 (2000) no. 4, pp. 297-324 | DOI | MR | Zbl

[7] L. Cherfils; Y. Il’yasov On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian, Commun. Pure Appl. Anal., Volume 4 (2005) no. 1, pp. 9-22 | MR | DOI

[8] M. Chipot; H. B. de Oliveira Some results on the p(u)-Laplacian problem, Math. Ann., Volume 375 (2019) no. 1-2, pp. 283-306 | DOI | MR | Zbl

[9] Maria Colombo; Giuseppe Mingione Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., Volume 218 (2015) no. 1, pp. 219-273 | DOI | MR | Zbl

[10] Ángel Crespo-Blanco; Leszek Gasiński; Petteri Harjulehto; Patrick Winkert A new class of double phase variable exponent problems: existence and uniqueness, J. Differ. Equations, Volume 323 (2022), pp. 182-228 | DOI | MR | Zbl

[11] Cristiana De Filippis; Giuseppe Mingione Lipschitz bounds and nonautonomous integrals, Arch. Ration. Mech. Anal., Volume 242 (2021) no. 2, pp. 973-1057 | DOI | MR | Zbl

[12] Marius Ghergu; Vicenţiu D. Rădulescu Explosive solutions of semilinear elliptic systems with gradient term, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 97 (2003) no. 3, pp. 467-475 | MR | Zbl

[13] Marius Ghergu; Vicenţiu D. Rădulescu On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl., Volume 311 (2005) no. 2, pp. 635-646 | DOI | MR | Zbl

[14] S. Kesavan Topics in functional analysis and applications, John Wiley & Sons, 1989, xii+267 pages | MR | Zbl

[15] Amine Laghrib On some evolution equation with combined local and nonlocal p(x,[u])-Laplace operator for image denoising, J. Franklin Inst., Volume 361 (2024) no. 5, 106667, 21 pages | DOI | MR | Zbl

[16] Wulong Liu; Guowei Dai Three ground state solutions for double phase problem, J. Math. Phys., Volume 59 (2018) no. 12, 121503, 7 pages | DOI | MR | Zbl

[17] Abdelkrim Moussaoui; Jean Vélin Multiple solutions for quasilinear elliptic systems involving variable exponents, Nonlinear Anal., Real World Appl., Volume 71 (2023), 103829, 19 pages | DOI | MR | Zbl

[18] V. V. Zhikov Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 50 (1986) no. 4, p. 675-710, 877 | MR

Cité par Sources :

Commentaires - Politique