[Problèmes à double phase non variationnels avec exposants variables dépendant du gradient de la solution avec terme de convection]
In this work, we study nonvariational double phase problems driven by a novel operator with variable exponents depending on the solutions and its gradient, along with a convection term. Using the Galerkin method, we prove the existence of solutions and apply a truncation technique to demonstrate multiplicity. Additionally, we address the uniqueness of solutions. The paper presents self-contained techniques to prove the multiplicity result, which may also be useful for addressing other problems with a convection term.
Dans ce travail, nous étudions des problèmes à double phase non variationnels gouvernés par un nouvel opérateur à exposants variables dépendant de la solution et de son gradient, auxquels s’ajoute un terme de convection. En utilisant la méthode de Galerkin, nous établissons l’existence de solutions et appliquons une technique de troncature pour démontrer la multiplicité. Nous abordons également la question de l’unicité des solutions. L’article présente des techniques autonomes permettant d’établir des résultats de multiplicité, lesquelles peuvent également être utiles pour traiter d’autres problèmes comportant un terme de convection.
Révisé le :
Accepté le :
Publié le :
Keywords: Double phase operators, multiplicity results, gradient term, variable exponents, nonvariational methods
Mots-clés : Opérateurs à double phase, résultats de multiplicité, terme en gradient, exposants variables, méthodes non variationnelles
Ala Eddine Bahrouni 1 ; Anouar Bahrouni 1
CC-BY 4.0
@article{CRMATH_2025__363_G12_1277_0,
author = {Ala Eddine Bahrouni and Anouar Bahrouni},
title = {Nonvariational double phase problems with variable exponents depending on the gradient of the solution with convection term},
journal = {Comptes Rendus. Math\'ematique},
pages = {1277--1287},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.788},
language = {en},
}
TY - JOUR AU - Ala Eddine Bahrouni AU - Anouar Bahrouni TI - Nonvariational double phase problems with variable exponents depending on the gradient of the solution with convection term JO - Comptes Rendus. Mathématique PY - 2025 SP - 1277 EP - 1287 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.788 LA - en ID - CRMATH_2025__363_G12_1277_0 ER -
%0 Journal Article %A Ala Eddine Bahrouni %A Anouar Bahrouni %T Nonvariational double phase problems with variable exponents depending on the gradient of the solution with convection term %J Comptes Rendus. Mathématique %D 2025 %P 1277-1287 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.788 %G en %F CRMATH_2025__363_G12_1277_0
Ala Eddine Bahrouni; Anouar Bahrouni. Nonvariational double phase problems with variable exponents depending on the gradient of the solution with convection term. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1277-1287. doi: 10.5802/crmath.788
[1] On a class of nonlocal evolution equations with the -Laplace operator, J. Math. Anal. Appl., Volume 501 (2021) no. 2, 125221, 26 pages | DOI | MR | Zbl
[2] A new class of anisotropic double phase problems: exponents depending on solutions and their gradients (2025) | arXiv
[3] Double phase problems with variable exponents depending on the solution and the gradient in the whole space , Nonlinear Anal., Real World Appl., Volume 85 (2025), 104334, 28 pages | MR | DOI | Zbl
[4] Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves, Nonlinearity, Volume 32 (2019) no. 7, pp. 2481-2495 | DOI | MR | Zbl
[5] Harnack inequalities for double phase functionals, Nonlinear Anal., Theory Methods Appl., Volume 121 (2015), pp. 206-222 | DOI | MR | Zbl
[6] Solitons in several space dimensions: Derrick’s problem and infinitely many solutions, Arch. Ration. Mech. Anal., Volume 154 (2000) no. 4, pp. 297-324 | DOI | MR | Zbl
[7] On the stationary solutions of generalized reaction diffusion equations with -Laplacian, Commun. Pure Appl. Anal., Volume 4 (2005) no. 1, pp. 9-22 | MR | DOI
[8] Some results on the -Laplacian problem, Math. Ann., Volume 375 (2019) no. 1-2, pp. 283-306 | DOI | MR | Zbl
[9] Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., Volume 218 (2015) no. 1, pp. 219-273 | DOI | MR | Zbl
[10] A new class of double phase variable exponent problems: existence and uniqueness, J. Differ. Equations, Volume 323 (2022), pp. 182-228 | DOI | MR | Zbl
[11] Lipschitz bounds and nonautonomous integrals, Arch. Ration. Mech. Anal., Volume 242 (2021) no. 2, pp. 973-1057 | DOI | MR | Zbl
[12] Explosive solutions of semilinear elliptic systems with gradient term, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 97 (2003) no. 3, pp. 467-475 | MR | Zbl
[13] On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl., Volume 311 (2005) no. 2, pp. 635-646 | DOI | MR | Zbl
[14] Topics in functional analysis and applications, John Wiley & Sons, 1989, xii+267 pages | MR | Zbl
[15] On some evolution equation with combined local and nonlocal -Laplace operator for image denoising, J. Franklin Inst., Volume 361 (2024) no. 5, 106667, 21 pages | DOI | MR | Zbl
[16] Three ground state solutions for double phase problem, J. Math. Phys., Volume 59 (2018) no. 12, 121503, 7 pages | DOI | MR | Zbl
[17] Multiple solutions for quasilinear elliptic systems involving variable exponents, Nonlinear Anal., Real World Appl., Volume 71 (2023), 103829, 19 pages | DOI | MR | Zbl
[18] Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 50 (1986) no. 4, p. 675-710, 877 | MR
Cité par Sources :
Commentaires - Politique
