[Une approche systèmes dynamiques de l’équation de Chandrasekhar–Hamilton–Jacobi]
We study the local properties of positive solutions of the equation $-\Delta u=e^u-M \vert {\nabla u}\vert ^q$ in a punctured domain $\Omega \setminus \lbrace 0\rbrace $ of $\mathbb{R}^N$ in the range of parameters $q>1$ and $M> 0$. We prove a series of a priori estimates near a singular point. In the case of radial solutions we use various techniques inherited from the dynamical systems theory to obtain the precise behaviour of singular solutions. We prove also the existence of singular solutions with these precise behaviours.
Nous étudions les propriétés locales des solutions de l’équation $-\Delta u= e^u-M \vert {\nabla u}\vert ^q$ dans un domaine épointé $\Omega \setminus \lbrace 0\rbrace $ de $\mathbb{R}^N$ avec des paramètres $q > 1$ et $M > 0$. Nous donnons une série d’estimations a priori près d’un point singulier. Dans le cas de solutions radiales, nous obtenons le comportement précis des solutions avec des méthodes issues de la théorie des systèmes dynamiques. Nous démontrons aussi l’existence de solutions singulières avec les comportements singuliers obtenus.
Révisé le :
Accepté le :
Publié le :
Keywords: Elliptic equations, limit sets, saddle points, stable manifolds, energy functions
Mots-clés : Équations elliptiques, ensembles limites, points selles, variété stable, fonctions d’énergie
Marie-Françoise Bidaut-Véron 1 ; Laurent Véron 1
CC-BY 4.0
@article{CRMATH_2025__363_G11_1177_0,
author = {Marie-Fran\c{c}oise Bidaut-V\'eron and Laurent V\'eron},
title = {A dynamical system approach to the {Chandrasekhar{\textendash}Hamilton{\textendash}Jacobi} equation},
journal = {Comptes Rendus. Math\'ematique},
pages = {1177--1217},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.793},
language = {en},
}
TY - JOUR AU - Marie-Françoise Bidaut-Véron AU - Laurent Véron TI - A dynamical system approach to the Chandrasekhar–Hamilton–Jacobi equation JO - Comptes Rendus. Mathématique PY - 2025 SP - 1177 EP - 1217 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.793 LA - en ID - CRMATH_2025__363_G11_1177_0 ER -
Marie-Françoise Bidaut-Véron; Laurent Véron. A dynamical system approach to the Chandrasekhar–Hamilton–Jacobi equation. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1177-1217. doi: 10.5802/crmath.793
[1] Liapunov functions for autonomous systems of second order, J. Math. Anal. Appl., Volume 23 (1968), pp. 645-664 | DOI | MR | Zbl
[2] A priori estimates for elliptic equations with reaction terms involving the function and its gradient, Math. Ann., Volume 378 (2020) no. 1-2, pp. 13-56 | DOI | MR | Zbl
[3] Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms, Discrete Contin. Dyn. Syst., Volume 40 (2020) no. 2, pp. 933-982 | DOI | MR | Zbl
[4] Singular solutions of some elliptic equations involving mixed absorption-reaction, Discrete Contin. Dyn. Syst., Volume 42 (2022) no. 8, pp. 3861-3930 | DOI | Zbl
[5] Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., Volume 106 (1991) no. 3, pp. 489-539 | DOI | MR | Zbl
[6] Local behaviour of the solutions of the Chipot–Weissler equation, Calc. Var. Partial Differ. Equ., Volume 62 (2023) no. 9, 241, 59 pages | DOI | MR | Zbl
[7] Singularities and asymptotics of solutions of the Emden–Chandrasekhar–Riccati equation (2025) | arXiv | Zbl
[8] A note on isolated singularities for linear elliptic equations, Mathematical analysis and applications, Part A (Advances in Mathematics. Supplementary Studies), Academic Press Inc., 1981 no. 7a, pp. 263-266 | MR | Zbl
[9] Uniform estimates and blow-up behavior for solutions of in two dimensions, Commun. Partial Differ. Equations, Volume 16 (1991) no. 8-9, pp. 1223-1253 | DOI | MR | Zbl
[10] Removable singularities for nonlinear elliptic equations, Topol. Methods Nonlinear Anal., Volume 9 (1997) no. 2, pp. 201-219 | DOI | MR | Zbl
[11] Distance functions and almost global solutions of eikonal equations, Commun. Partial Differ. Equations, Volume 35 (2010) no. 3, pp. 391-414 | DOI | MR | Zbl
[12] An introduction to the study of stellar structure, University of Chicago Press, 1939, ix+509 pages | MR | Zbl
[13] On the elliptic problem , Nonlinear diffusion equations and their equilibrium states, I (Berkeley, CA, 1986) (W.-M. Ni; L. A. Peletier; James Serrin, eds.) (Mathematical Sciences Research Institute Publications), Springer, 1988 no. 12, pp. 237-243 | DOI | MR | Zbl
[14] Some blowup results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal., Volume 20 (1989) no. 4, pp. 886-907 | DOI | MR | Zbl
[15] A singular solution of the capillary equation. I. Existence, Invent. Math., Volume 29 (1975) no. 2, pp. 143-148 | DOI | MR | Zbl
[16] A singular solution of the capillary equation. II. Uniqueness, Invent. Math., Volume 29 (1975) no. 2, pp. 149-159 | DOI | MR | Zbl
[17] Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem, Math. Ann., Volume 283 (1989) no. 4, pp. 583-630 | DOI | MR | Zbl
[18] Isolated singularities of solutions of a 2-D diffusion equation with mixed reaction, Calc. Var. Partial Differ. Equ., Volume 64 (2025) no. 7, 235, 32 pages | DOI | MR | Zbl
[19] Non-autonomous systems: asymptotic behaviour and weak invariance principles, J. Differ. Equations, Volume 189 (2003) no. 2, pp. 440-460 | DOI | MR | Zbl
[20] Isolated singularities of positive solutions of elliptic equations with weighted gradient term, Anal. PDE, Volume 9 (2016) no. 7, pp. 1671-1692 | DOI | MR | Zbl
[21] Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., Volume 139 (2007) no. 3, pp. 555-579 | DOI | MR | Zbl
[22] Isotropic singularities of solutions of nonlinear elliptic inequalities, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 6 (1989) no. 1, pp. 37-72 | MR | DOI | Numdam | Zbl
[23] Existence and non-existence results for ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal., Volume 121 (1992) no. 2, pp. 101-130 | DOI | Zbl | MR
[24] Classification of positive solutions of quasilinear elliptic equations, Topol. Methods Nonlinear Anal., Volume 3 (1994) no. 1, pp. 1-25 | DOI | MR | Zbl
[25] Étude de quelques équations elliptiques fortement non-linéaires, Ph. D. Thesis, Université de Metz (France) (1994)
Cité par Sources :
Commentaires - Politique
