[Une perspective historique sur le transport parallèle : immersions isométriques et précession de Foucault]
This paper contributes to the historical understanding of the developments surrounding the Levi-Civita parallel transport problem, exploring its connections with the local problem of isometric immersions and alternative proposals. Additionally, it highlights one of its remarkable applications: the geometric interpretation of Foucault’s pendulum precession. It also recalls how other geometric explanations of this phenomenon emerged in the context of Berry and Hannay phases.
Cet article contribue à la compréhension historique des développements liés au problème du transport parallèle de Levi-Civita, en explorant ses liens avec le problème local des immersions isométriques ainsi qu’avec des propositions alternatives. Il met également en lumière l’une de ses applications remarquables : l’interprétation géométrique de la précession du pendule de Foucault. Enfin, il rappelle comment d’autres explications géométriques de ce phénomène ont émergé dans le contexte des phases de Berry et de Hannay.
Révisé le :
Accepté le :
Publié le :
Keywords: Parallel transport, isometric immersions, Foucault pendulum precession
Mots-clés : Transport parallèle, immersions isométriques, précession du pendule de Foucault
Franco Cardin  1 ; Rossana Tazzioli  2
CC-BY 4.0
@article{CRMATH_2026__364_G1_13_0,
author = {Franco Cardin and Rossana Tazzioli},
title = {A historical perspective on parallel transport: isometric immersions and {Foucault} precession},
journal = {Comptes Rendus. Math\'ematique},
pages = {13--26},
year = {2026},
publisher = {Acad\'emie des sciences, Paris},
volume = {364},
doi = {10.5802/crmath.809},
language = {en},
}
TY - JOUR AU - Franco Cardin AU - Rossana Tazzioli TI - A historical perspective on parallel transport: isometric immersions and Foucault precession JO - Comptes Rendus. Mathématique PY - 2026 SP - 13 EP - 26 VL - 364 PB - Académie des sciences, Paris DO - 10.5802/crmath.809 LA - en ID - CRMATH_2026__364_G1_13_0 ER -
Franco Cardin; Rossana Tazzioli. A historical perspective on parallel transport: isometric immersions and Foucault precession. Comptes Rendus. Mathématique, Volume 364 (2026), pp. 13-26. doi: 10.5802/crmath.809
[1] Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer, 1989 | DOI | MR | Zbl
[2] Mathematical aspects of classical and celestial mechanics, Encyclopaedia of Mathematical Sciences, 3, Springer, 2006 | MR | Zbl
[3] Teoria fondamentale degli spazii di curvatura costante, Annali di Mat. (2), Volume 2 (1869), pp. 232-255 | DOI | Zbl
[4] Riflessioni sul pendolo di Foucault (2025)
[5] Classical adiabatic angles and quantal adiabatic phase, J. Phys. A. Math. Gen., Volume 18 (1985), pp. 15-27 | DOI | Zbl | MR
[6] The quantum phase, five years after, Geometric phases in physics (Alfred Shapere; Frank Wilczek, eds.) (Advanced Series in Mathematical Physics), Volume 5, World Scientific, 1989, pp. 7-28 | MR
[7] Classical non-adiabatic angles, J. Phys. A. Math. Gen., Volume 21 (1988), p. L325-L331 | DOI | Zbl | MR
[8] Ein Beitrag zum Problem der Einbettung der Riemannschen Räume in Euklidischen Räumen, Mat. Sb., Volume 38 (1931), pp. 74-85 | Zbl
[9] Il concetto di curvatura. Genesi, sviluppo e intreccio fisico-matematico, Unitext, 146, Springer, 2023 | Zbl | DOI
[10] Integrability of close encounters in the spatial restricted three-body problem, Commun. Contemp. Math., Volume 24 (2022), pp. 1-41 | DOI | Zbl | MR
[11] Levi-Civita simplifies Einstein. The Ricci rotation coefficients and unified field theories, Arch. Hist. Exact Sci., Volume 78 (2024), pp. 87-126 | DOI | MR | Zbl
[12] Réflexions sur les tenseurs et les invariants : de Ricci à Bourbaki, Towards a philosophy of mathematical invariants (F. Jaëck, ed.), Spartacus-IDH, 2025, pp. 1-27
[13] Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Annal. Soc. Polon. Math., Volume 6 (1927), pp. 1-7 | Zbl
[14] Les travaux de Nash et Kuiper sur le plongement isométrique des -variétés riemanniennes dans l’espace euclidien, Séminaire N. Bourbaki, Vol. 4, Société Mathématique de France, 1958, pp. 139-149 (Exposé no. 147) | Zbl
[15] Uber die Transformation der homogenen Differentialausdrucke zweiten Grades, J. Reine Angew. Math., Volume 70 (1869), pp. 46-70 | MR | Zbl
[16] Ars inveniendi, Pisa University Press, 2022 | Zbl | MR
[17] Relativity on curved manifolds, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1990 | Zbl | MR
[18] On the genesis of the concept of covariant differentiation, Rev. Hist. Math., Volume 2 (1996), pp. 215-264 | Zbl
[19] Zur einheitlichen Feldtheorie, Sitzungsber. K. Preuss. Akad. Wiss., Volume 70 (1929), pp. 2-7 | Zbl
[20] Theory of gravitational interactions, Undergraduate Lecture Notes in Physics, Springer, 2013 | DOI | Zbl | MR
[21] Embeddings and immersions in Riemannian geometry, Russ. Math. Surv., Volume 25 (1970), pp. 1-57 | DOI | Zbl
[22] Isometric embeddings of Riemannian manifolds, Proceedings of the International Congress of Mathematicians. Vol. I, II (Kyoto, 1990) (I. Satake, ed.), Mathematical Society of Japan; Springer, 1990, pp. 1137-1143 | Zbl | MR
[23] Isometric embedding of Riemannian manifolds in Euclidean spaces, Mathematical Surveys and Monographs, 130, American Mathematical Society, 2006 | Zbl | MR
[24] Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian, J. Phys. A. Math. Gen., Volume 18 (1985), pp. 221-230 | DOI | MR
[25] Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Annal. Soc. Polon. Math., Volume 5 (1926), pp. 38-42
[26] Hannay angle study of the Foucault pendulum in actionangle variables, Am. J. Phys., Volume 61 (1993), pp. 170-174 | DOI
[27] Vorlesungen über höhere Geometrie (W. Blaschke, ed.), Grundlehren der Mathematischen Wissenschaften, 22, Springer, 1926 | Zbl | MR
[28] Sur la régularisation qualitative du problème restreint des trois corps, Acta Math., Volume 30 (1906), pp. 305-327 | DOI | Zbl | MR
[29] Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura Riemanniana, Rend. Circ. Mat. Palermo, Volume 42 (1916), pp. 173-205 | DOI | Zbl
[30] Lezioni di calcolo differenziale assoluto (Enrico Persico, ed.), Alberto Stock Editore, 1925 | Zbl
[31] The absolute differential calculus. Calculus of tensors (E. Persico, ed.), Dover Publications, 2005 (Reprint of the 1926 translation) | Zbl | MR
[32] Untersuchungen in Betreff der ganzen homogenen Functionen von Differentialen, J. Reine Angew. Math., Volume 70 (1869), pp. 71-102 | Zbl | MR
[33] Lectures on mechanics, London Mathematical Society Lecture Note Series, 174, Cambridge University Press, 1992 | Zbl | MR
[34] Introduction to mechanics and symmetry, Texts in Applied Mathematics, 17, Springer, 1999 | DOI | Zbl | MR
[35] -isometric imbeddings, Ann. Math., Volume 60 (1954), pp. 383-396 | DOI | Zbl
[36] The imbedding problem for Riemannian manifolds, Ann. of Math. (2), Volume 63 (1956), pp. 20-63 | DOI | MR | Zbl
[37] Geometry and the Foucault pendulum, Am. Math. Mon., Volume 102 (1995) no. 6, pp. 515-522 | DOI | Zbl | MR
[38] Remarque de M. Poinsot sur l’ingénieuse expérience imaginée par M. Foucault pour rendre sensible le mouvement de rotation de la terre, Comptes Rendus des Séances de l’Académie des Sciences. Paris, Volume 32 (1851), pp. 206-207
[39] Principii di una teoria delle forme differenziali quadratiche, Annali di Mat. (2), Volume 12 (1884), pp. 138-171 | Zbl
[40] Dei sistemi di congruenze ortogonali in una varietà qualunque, Mem. Acc. Linc. (5), Volume 2 (1896), pp. 276-322 | Zbl
[41] Méthodes de calcul différentiel absolu et leurs applications, Math. Ann., Volume 54 (1900), pp. 125-201 | Zbl | MR
[42] Commentatio mathematica, qua respondere tentatur quaestioni ab Ill.ma Academia Parisiensi propositae, Gesammelte mathematische Werke (H. Weber, ed.), Teubner, 1861, pp. 370-383
[43] Nota alla memoria del Sig. Beltrami: Sugli spazii di curvatura costante, Ann. Mat. Pura Appl., Volume 5 (1872), pp. 179-193 | Zbl
[44] Hermann Weyl’s contribution to geometry, 1917–1923, The intersection of history and mathematics (Chikara Sasaki; Mitsuo Sugiura; Joseph W. Dauben, eds.) (Science Networks. Historical Studies), Volume 15, Birkhäuser, 1994, pp. 203-230 | DOI | Zbl
[45] Hermann Weyl’s purely infinitesimal geometry, Proceedings of the International Congress of Mathematicians. Vol. 1, 2 (Zurich, 1994) (S. D. Chatterji, ed.), Birkhäuser, 1995, pp. 1592-1603 | DOI | Zbl | MR
[46] Sulla curvatura delle superficie e varietà, Rend. Circ. Mat. Palermo, Volume 42 (1916), pp. 227-259 | DOI | Zbl
[47] Aspetti matematici dei legami tra relatività e senso comune, Cinquant’anni di Relatività, 1905–1955 (M. Pantaleo, ed.), Editrice Universitaria, 1955, pp. 313-333 | Zbl
[48] From differential geometry to relativity. Levi-Civita’s lectures on the absolute differential calculus, 1925–1928, Heritage of European Mathematics, European Mathematical Society, 2025 | Zbl
[49] Raum, Zeit, Materie (D. Giulini; E. Scholz, eds.), Klassische Texte der Wissenschaft, Springer, 2024 | Zbl | MR
Cité par Sources :
Commentaires - Politique
