Comptes Rendus
Article de recherche - Histoire des mathématiques
A historical perspective on parallel transport: isometric immersions and Foucault precession
[Une perspective historique sur le transport parallèle : immersions isométriques et précession de Foucault]
Comptes Rendus. Mathématique, Volume 364 (2026), pp. 13-26

This paper contributes to the historical understanding of the developments surrounding the Levi-Civita parallel transport problem, exploring its connections with the local problem of isometric immersions and alternative proposals. Additionally, it highlights one of its remarkable applications: the geometric interpretation of Foucault’s pendulum precession. It also recalls how other geometric explanations of this phenomenon emerged in the context of Berry and Hannay phases.

Cet article contribue à la compréhension historique des développements liés au problème du transport parallèle de Levi-Civita, en explorant ses liens avec le problème local des immersions isométriques ainsi qu’avec des propositions alternatives. Il met également en lumière l’une de ses applications remarquables : l’interprétation géométrique de la précession du pendule de Foucault. Enfin, il rappelle comment d’autres explications géométriques de ce phénomène ont émergé dans le contexte des phases de Berry et de Hannay.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.809
Classification : 53Z05, 53A17, 53-03
Keywords: Parallel transport, isometric immersions, Foucault pendulum precession
Mots-clés : Transport parallèle, immersions isométriques, précession du pendule de Foucault

Franco Cardin  1   ; Rossana Tazzioli  2

1 Dipartimento di Matematica Tullio Levi-Civita, Università di Padova, Italy
2 Laboratoire Paul Painlevé, Université de Lille, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2026__364_G1_13_0,
     author = {Franco Cardin and Rossana Tazzioli},
     title = {A historical perspective on parallel transport: isometric immersions and {Foucault} precession},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {13--26},
     year = {2026},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {364},
     doi = {10.5802/crmath.809},
     language = {en},
}
TY  - JOUR
AU  - Franco Cardin
AU  - Rossana Tazzioli
TI  - A historical perspective on parallel transport: isometric immersions and Foucault precession
JO  - Comptes Rendus. Mathématique
PY  - 2026
SP  - 13
EP  - 26
VL  - 364
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.809
LA  - en
ID  - CRMATH_2026__364_G1_13_0
ER  - 
%0 Journal Article
%A Franco Cardin
%A Rossana Tazzioli
%T A historical perspective on parallel transport: isometric immersions and Foucault precession
%J Comptes Rendus. Mathématique
%D 2026
%P 13-26
%V 364
%I Académie des sciences, Paris
%R 10.5802/crmath.809
%G en
%F CRMATH_2026__364_G1_13_0
Franco Cardin; Rossana Tazzioli. A historical perspective on parallel transport: isometric immersions and Foucault precession. Comptes Rendus. Mathématique, Volume 364 (2026), pp. 13-26. doi: 10.5802/crmath.809

[1] V. I. Arnol’d Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer, 1989 | DOI | MR | Zbl

[2] Vladimir I. Arnol’d; Valery V. Kozlov; Anatoly I. Neishtadt Mathematical aspects of classical and celestial mechanics, Encyclopaedia of Mathematical Sciences, 3, Springer, 2006 | MR | Zbl

[3] E. Beltrami Teoria fondamentale degli spazii di curvatura costante, Annali di Mat. (2), Volume 2 (1869), pp. 232-255 | DOI | Zbl

[4] G. Benettin Riflessioni sul pendolo di Foucault (2025)

[5] M. V. Berry Classical adiabatic angles and quantal adiabatic phase, J. Phys. A. Math. Gen., Volume 18 (1985), pp. 15-27 | DOI | Zbl | MR

[6] M. V. Berry The quantum phase, five years after, Geometric phases in physics (Alfred Shapere; Frank Wilczek, eds.) (Advanced Series in Mathematical Physics), Volume 5, World Scientific, 1989, pp. 7-28 | MR

[7] M. V. Berry; J. H. Hannay Classical non-adiabatic angles, J. Phys. A. Math. Gen., Volume 21 (1988), p. L325-L331 | DOI | Zbl | MR

[8] C. Burstin Ein Beitrag zum Problem der Einbettung der Riemannschen Räume in Euklidischen Räumen, Mat. Sb., Volume 38 (1931), pp. 74-85 | Zbl

[9] F. Cardin Il concetto di curvatura. Genesi, sviluppo e intreccio fisico-matematico, Unitext, 146, Springer, 2023 | Zbl | DOI

[10] F. Cardin; M. Guzzo Integrability of close encounters in the spatial restricted three-body problem, Commun. Contemp. Math., Volume 24 (2022), pp. 1-41 | DOI | Zbl | MR

[11] F. Cardin; R. Tazzioli Levi-Civita simplifies Einstein. The Ricci rotation coefficients and unified field theories, Arch. Hist. Exact Sci., Volume 78 (2024), pp. 87-126 | DOI | MR | Zbl

[12] F. Cardin; R. Tazzioli Réflexions sur les tenseurs et les invariants : de Ricci à Bourbaki, Towards a philosophy of mathematical invariants (F. Jaëck, ed.), Spartacus-IDH, 2025, pp. 1-27

[13] E. Cartan Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Annal. Soc. Polon. Math., Volume 6 (1927), pp. 1-7 | Zbl

[14] G. Choquet Les travaux de Nash et Kuiper sur le plongement isométrique des C 1 -variétés riemanniennes dans l’espace euclidien, Séminaire N. Bourbaki, Vol. 4, Société Mathématique de France, 1958, pp. 139-149 (Exposé no. 147) | Zbl

[15] E. B. Christoffel Uber die Transformation der homogenen Differentialausdrucke zweiten Grades, J. Reine Angew. Math., Volume 70 (1869), pp. 46-70 | MR | Zbl

[16] A. Cogliati Ars inveniendi, Pisa University Press, 2022 | Zbl | MR

[17] F. De Felice; C. J. S. Clarke Relativity on curved manifolds, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1990 | Zbl | MR

[18] L. Dell’Aglio On the genesis of the concept of covariant differentiation, Rev. Hist. Math., Volume 2 (1996), pp. 215-264 | Zbl

[19] A. Einstein Zur einheitlichen Feldtheorie, Sitzungsber. K. Preuss. Akad. Wiss., Volume 70 (1929), pp. 2-7 | Zbl

[20] M. Gasperini Theory of gravitational interactions, Undergraduate Lecture Notes in Physics, Springer, 2013 | DOI | Zbl | MR

[21] M. L. Gromov; V. A. Rokhlin Embeddings and immersions in Riemannian geometry, Russ. Math. Surv., Volume 25 (1970), pp. 1-57 | DOI | Zbl

[22] M. Günther Isometric embeddings of Riemannian manifolds, Proceedings of the International Congress of Mathematicians. Vol. I, II (Kyoto, 1990) (I. Satake, ed.), Mathematical Society of Japan; Springer, 1990, pp. 1137-1143 | Zbl | MR

[23] Qing Han; Jia-Xing Hong Isometric embedding of Riemannian manifolds in Euclidean spaces, Mathematical Surveys and Monographs, 130, American Mathematical Society, 2006 | Zbl | MR

[24] J. H. Hannay Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian, J. Phys. A. Math. Gen., Volume 18 (1985), pp. 221-230 | DOI | MR

[25] M. Janet Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Annal. Soc. Polon. Math., Volume 5 (1926), pp. 38-42

[26] A. Khein; D. F. Nelson Hannay angle study of the Foucault pendulum in actionangle variables, Am. J. Phys., Volume 61 (1993), pp. 170-174 | DOI

[27] F. Klein Vorlesungen über höhere Geometrie (W. Blaschke, ed.), Grundlehren der Mathematischen Wissenschaften, 22, Springer, 1926 | Zbl | MR

[28] T. Levi-Civita Sur la régularisation qualitative du problème restreint des trois corps, Acta Math., Volume 30 (1906), pp. 305-327 | DOI | Zbl | MR

[29] T. Levi-Civita Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura Riemanniana, Rend. Circ. Mat. Palermo, Volume 42 (1916), pp. 173-205 | DOI | Zbl

[30] T. Levi-Civita Lezioni di calcolo differenziale assoluto (Enrico Persico, ed.), Alberto Stock Editore, 1925 | Zbl

[31] T. Levi-Civita The absolute differential calculus. Calculus of tensors (E. Persico, ed.), Dover Publications, 2005 (Reprint of the 1926 translation) | Zbl | MR

[32] R. Lipschitz Untersuchungen in Betreff der ganzen homogenen Functionen von n Differentialen, J. Reine Angew. Math., Volume 70 (1869), pp. 71-102 | Zbl | MR

[33] J. E. Marsden Lectures on mechanics, London Mathematical Society Lecture Note Series, 174, Cambridge University Press, 1992 | Zbl | MR

[34] J. E. Marsden; T. S. Ratiu Introduction to mechanics and symmetry, Texts in Applied Mathematics, 17, Springer, 1999 | DOI | Zbl | MR

[35] J. Nash C 1 -isometric imbeddings, Ann. Math., Volume 60 (1954), pp. 383-396 | DOI | Zbl

[36] John Nash The imbedding problem for Riemannian manifolds, Ann. of Math. (2), Volume 63 (1956), pp. 20-63 | DOI | MR | Zbl

[37] J. Oprea Geometry and the Foucault pendulum, Am. Math. Mon., Volume 102 (1995) no. 6, pp. 515-522 | DOI | Zbl | MR

[38] L. Poinsot Remarque de M. Poinsot sur l’ingénieuse expérience imaginée par M. Foucault pour rendre sensible le mouvement de rotation de la terre, Comptes Rendus des Séances de l’Académie des Sciences. Paris, Volume 32 (1851), pp. 206-207

[39] G. Ricci Curbastro Principii di una teoria delle forme differenziali quadratiche, Annali di Mat. (2), Volume 12 (1884), pp. 138-171 | Zbl

[40] G. Ricci Curbastro Dei sistemi di congruenze ortogonali in una varietà qualunque, Mem. Acc. Linc. (5), Volume 2 (1896), pp. 276-322 | Zbl

[41] G. Ricci Curbastro; T. Levi-Civita Méthodes de calcul différentiel absolu et leurs applications, Math. Ann., Volume 54 (1900), pp. 125-201 | Zbl | MR

[42] G. F. B. Riemann Commentatio mathematica, qua respondere tentatur quaestioni ab Ill.ma Academia Parisiensi propositae, Gesammelte mathematische Werke (H. Weber, ed.), Teubner, 1861, pp. 370-383

[43] L. Schlaefli Nota alla memoria del Sig. Beltrami: Sugli spazii di curvatura costante, Ann. Mat. Pura Appl., Volume 5 (1872), pp. 179-193 | Zbl

[44] E. Scholz Hermann Weyl’s contribution to geometry, 1917–1923, The intersection of history and mathematics (Chikara Sasaki; Mitsuo Sugiura; Joseph W. Dauben, eds.) (Science Networks. Historical Studies), Volume 15, Birkhäuser, 1994, pp. 203-230 | DOI | Zbl

[45] E. Scholz Hermann Weyl’s purely infinitesimal geometry, Proceedings of the International Congress of Mathematicians. Vol. 1, 2 (Zurich, 1994) (S. D. Chatterji, ed.), Birkhäuser, 1995, pp. 1592-1603 | DOI | Zbl | MR

[46] F. Severi Sulla curvatura delle superficie e varietà, Rend. Circ. Mat. Palermo, Volume 42 (1916), pp. 227-259 | DOI | Zbl

[47] F. Severi Aspetti matematici dei legami tra relatività e senso comune, Cinquant’anni di Relatività, 1905–1955 (M. Pantaleo, ed.), Editrice Universitaria, 1955, pp. 313-333 | Zbl

[48] R. Tazzioli From differential geometry to relativity. Levi-Civita’s lectures on the absolute differential calculus, 1925–1928, Heritage of European Mathematics, European Mathematical Society, 2025 | Zbl

[49] H. Weyl Raum, Zeit, Materie (D. Giulini; E. Scholz, eds.), Klassische Texte der Wissenschaft, Springer, 2024 | Zbl | MR

Cité par Sources :

Commentaires - Politique