Comptes Rendus
Théorie des nombres et théorie des groupes réductifs
On non-admissible irreducible modulo p representations of GL 2 ( p 2 )
[Sur les représentations irréductibles non-admissibles modulo p de GL 2 ( p 2 )]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 627-632.

Nous utilisons un diagramme de Diamond attaché à une représentation galoisienne mod p semi-simple réductible de dimension 2 de Gal( p ¯/ p 2 ) pour construire une représentation mod p non-admissible irréductible lisse de GL 2 ( p 2 ) en suivant l’approche de Daniel Le.

We use a Diamond diagram attached to a 2-dimensional reducible split mod p Galois representation of Gal( p ¯/ p 2 ) to construct a non-admissible smooth irreducible mod p representation of GL 2 ( p 2 ) following the approach of Daniel Le.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.85
Classification : 22E50, 11S37

Eknath Ghate 1 ; Mihir Sheth 1

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai - 400005, India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_5_627_0,
     author = {Eknath Ghate and Mihir Sheth},
     title = {On non-admissible irreducible modulo $p$ representations of $\protect \mathrm{GL}_{2}(\protect \mathbb{Q}_{p^{2}})$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {627--632},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {5},
     year = {2020},
     doi = {10.5802/crmath.85},
     language = {en},
}
TY  - JOUR
AU  - Eknath Ghate
AU  - Mihir Sheth
TI  - On non-admissible irreducible modulo $p$ representations of $\protect \mathrm{GL}_{2}(\protect \mathbb{Q}_{p^{2}})$
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 627
EP  - 632
VL  - 358
IS  - 5
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.85
LA  - en
ID  - CRMATH_2020__358_5_627_0
ER  - 
%0 Journal Article
%A Eknath Ghate
%A Mihir Sheth
%T On non-admissible irreducible modulo $p$ representations of $\protect \mathrm{GL}_{2}(\protect \mathbb{Q}_{p^{2}})$
%J Comptes Rendus. Mathématique
%D 2020
%P 627-632
%V 358
%N 5
%I Académie des sciences, Paris
%R 10.5802/crmath.85
%G en
%F CRMATH_2020__358_5_627_0
Eknath Ghate; Mihir Sheth. On non-admissible irreducible modulo $p$ representations of $\protect \mathrm{GL}_{2}(\protect \mathbb{Q}_{p^{2}})$. Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 627-632. doi : 10.5802/crmath.85. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.85/

[1] Noriyuki Abe; Guy Henniart; Florian Herzig; Marie-France Vigneras Questions on mod p representations of reductive p-adic groups (2017) (https://arxiv.org/abs/1703.02063)

[2] Laurent Berger Central characters for smooth irreducible modular representations of GL 2 ( p ), Rend. Semin. Mat. Univ. Padova, Volume 128 (2012), pp. 1-6 | DOI | MR | Zbl

[3] Joseph Bernstein All reductive p-adic groups are of type I, Funkts. Anal. Prilozh., Volume 8 (1974) no. 2, pp. 3-6 | MR

[4] Christophe Breuil Representations of Galois and of GL 2 in characteristic p (2007) (Lecture notes of a graduate course at Columbia University)

[5] Christophe Breuil; Vytautas Paškūnas Towards a modulo p Langlands correspondence for GL 2 , Memoirs of the American Mathematical Society, 216, American Mathematical Society, 2012 | MR | Zbl

[6] Harish-Chandra Harmonic analysis on reductive p-adic groups. Notes by G. van Dijk, Lecture Notes in Mathematics, 162, Springer, 1970 | Zbl

[7] Guy Henniart; Marie-France Vignéras Representations of a p-adic group in characteristic p, Representations of reductive groups (Proceedings of Symposia in Pure Mathematics), Volume 101, American Mathematical Society, 2019, pp. 171-210 | DOI | MR

[8] Hervé Jacquet Sur les représentations des groupes réductifs p-adiques, C. R. Math. Acad. Sci. Paris, Volume 280 (1975), pp. 1271-1272 | Zbl

[9] Daniel Le On some non-admissible smooth representations of GL 2 , Math. Res. Lett., Volume 26 (2019) no. 6, pp. 1747-1758 | MR

[10] Vytautas Paškūnas Coefficient systems and supersingular representations of GL 2 (F), Mémoires de la Société Mathématique de France, 99, Société Mathématique de France, 2004 | Numdam | MR | Zbl

[11] Benjamin Schraen Sur la présentation des représentations supersingulières de GL 2 (F), J. Reine Angew. Math., Volume 704 (2015), pp. 187-208 | MR | Zbl

[12] Marie-France Vignéras Représentations l-modulaires d’un groupe réductif p-adique avec lp, Progress in Mathematics, 137, Birkhäuser, 1996 | Zbl

Cité par Sources :

Commentaires - Politique