Comptes Rendus
Géométrie algébrique
Very special algebraic groups
[Groupes algébriques très spéciaux]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 713-719.

Nous disons qu’un groupe algébrique lisse G sur un corps k est très spécial si pour toute extension de corps K/k, toute K-variété homogène sous G K a un point K-rationnel. On sait que tout groupe linéaire résoluble scindé est très spécial. Dans cette note, nous obtenons la réciproque et nous discutons ses relations avec la classification birationnelle des actions de groupes algébriques.

We say that a smooth algebraic group G over a field k is very special if for any field extension K/k, every G K -homogeneous K-variety has a K-rational point. It is known that every split solvable linear algebraic group is very special. In this note, we show that the converse holds, and discuss its relationship with the birational classification of algebraic group actions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.86

Michel Brion 1 ; Emmanuel Peyre 1

1 Université Grenoble Alpes, Institut Fourier, CS 40700, 38058 Grenoble Cedex 09, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_6_713_0,
     author = {Michel Brion and Emmanuel Peyre},
     title = {Very special algebraic groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {713--719},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {6},
     year = {2020},
     doi = {10.5802/crmath.86},
     language = {en},
}
TY  - JOUR
AU  - Michel Brion
AU  - Emmanuel Peyre
TI  - Very special algebraic groups
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 713
EP  - 719
VL  - 358
IS  - 6
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.86
LA  - en
ID  - CRMATH_2020__358_6_713_0
ER  - 
%0 Journal Article
%A Michel Brion
%A Emmanuel Peyre
%T Very special algebraic groups
%J Comptes Rendus. Mathématique
%D 2020
%P 713-719
%V 358
%N 6
%I Académie des sciences, Paris
%R 10.5802/crmath.86
%G en
%F CRMATH_2020__358_6_713_0
Michel Brion; Emmanuel Peyre. Very special algebraic groups. Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 713-719. doi : 10.5802/crmath.86. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.86/

[1] Jason Bell; Dragos Ghioca; Zinovy Reichstein On a dynamical version of a theorem of Rosenlicht, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (2017) no. 1, pp. 187-204 | MR | Zbl

[2] Jean-Louis Colliot-Thélène; Jean-Jacques Sansuc Principal homogeneous spaces under flasque tori: applications, J. Algebra, Volume 106 (1987) no. 1, pp. 148-205 | DOI | MR | Zbl

[3] Brian Conrad The structure of solvable groups over general fields, On group schemes. A celebration of SGA3 (Panoramas et Synthèses), Volume 46, Société Mathématique de France, 2015, pp. 159-192 | MR | Zbl

[4] Charles W. Curtis; Irving Reiner Representation theory of finite groups and associative algebras, American Mathematical Society, 1966 | Zbl

[5] Michel Demazure Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 507-588 | DOI | Numdam | Zbl

[6] Michel Demazure; Pierre Gabriel Groupes algébriques, Masson, 1970 | Zbl

[7] Alexandre Grothendieck Torsion homologique et sections rationnelles, Anneaux de Chow et applications (Séminaire Claude Chevalley), Volume 3, Secrétariat Mathématique, 1958, 5, 29 pages | Numdam

[8] Mathieu Huruguen Special reductive groups over an arbitrary field, Transform. Groups, Volume 21 (2016) no. 4, pp. 1079-1104 | DOI | MR | Zbl

[9] Alfredo Jones On representations of finite groups over valuation rings, Ill. J. Math., Volume 9 (1965), pp. 297-303 | DOI | MR | Zbl

[10] James S. Milne Algebraic groups. The theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, 2017 | Zbl

[11] Vladimir L. Popov; Èrnest B. Vinberg Invariant theory, Algebraic geometry IV: linear algebraic groups, invariant theory (Encyclopaedia of Mathematical Sciences), Volume 55, Springer, 1994, pp. 123-278 | DOI

[12] Zinovy Reichstein; Dajano Tossici Special groups, versality and the Grothendieck–Serre conjecture, Doc. Math., Volume 25 (2020), pp. 171-188 | MR | Zbl

[13] Maxwell Rosenlicht Some basic theorems on algebraic groups, Am. J. Math., Volume 78 (1956), pp. 401-443 | DOI | MR | Zbl

[14] Maxwell Rosenlicht Questions of rationality for solvable algebraic groups over nonperfect fields, Ann. Mat. Pura Appl., Volume 62 (1963), pp. 97-120 | DOI | MR | Zbl

[15] Jean-Pierre Serre Espaces fibrés algébriques, Anneaux de Chow et applications (Séminaire Claude Chevalley), Volume 3, Secrétariat Mathématique, 1958, 1, 37 pages | Numdam

[16] Nguyen Duy Tân Special unipotent groups are split, J. Pure Appl. Algebra, Volume 222 (2018) no. 9, pp. 2465-2469 | MR | Zbl

[17] André Weil On algebraic groups of transformations, Am. J. Math., Volume 77 (1955), pp. 355-391 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique