[Les fibrés de Higgs stables sur les variétés de Gauduchon]
Let M be a compact complex manifold equipped with a Gauduchon metric. If TM is holomorphically trivial, and
Soit M une variété complexe compacte muni d'une métrique de Gauduchon. Si TM est holomorphiquement trivial, et
Accepté le :
Publié le :
Indranil Biswas 1
@article{CRMATH_2011__349_1-2_71_0, author = {Indranil Biswas}, title = {Stable {Higgs} bundles on compact {Gauduchon} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {71--74}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.11.010}, language = {en}, }
Indranil Biswas. Stable Higgs bundles on compact Gauduchon manifolds. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 71-74. doi : 10.1016/j.crma.2010.11.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.010/
[1] Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math., Volume 72 (1960), pp. 179-188
[2] Hermitian–Einstein connections and stable vector bundles over compact complex surfaces, Math. Ann., Volume 280 (1988), pp. 625-648
[3] Flat G-bundles with canonical metrics, J. Diff. Geom., Volume 28 (1988), pp. 361-382
[4] Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc., Volume 55 (1987), pp. 127-131
[5] La 1-forme de torsion d'une variétés hermitienne compacte, Math. Ann., Volume 267 (1984), pp. 495-518
[6] The self-duality equations on a Riemann surface, Proc. London Math. Soc., Volume 55 (1987), pp. 59-126
[7] Differential Geometry of Complex Vector Bundles, Publications of the Math. Society of Japan, vol. 15, Iwanami Shoten Publishers/Princeton University Press, Tokyo/Princeton, NJ, 1987
[8] Hermitian–Yang–Mills connection on non-Käher manifolds, San Diego, Calif., 1986 (Adv. Ser. Math. Phys.), Volume vol. 1, World Sci. Publishing, Singapore (1987), pp. 560-573
[9] Deformations of complex structures on
[10] Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc., Volume 1 (1988), pp. 867-918
[11] Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math., Volume 75 (1992), pp. 5-95
[12] On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math., Volume 39 (1986), pp. 257-293
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier