In this short Note we present an infinite family of arbitrary high dimensional counterexamples to the King's conjecture.
Dans cette Note nous présentons une famille infinie de contre-exemples à la conjecture de A. King, de dimension arbitrairement grande.
Accepted:
Published online:
Mateusz Michałek 1, 2
@article{CRMATH_2011__349_1-2_67_0, author = {Mateusz Micha{\l}ek}, title = {Family of counterexamples to {King's} conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {67--69}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.11.027}, language = {en}, }
Mateusz Michałek. Family of counterexamples to King's conjecture. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 67-69. doi : 10.1016/j.crma.2010.11.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.027/
[1] On the classification of smooth projective toric varieties, Tôhoku Math. J., Volume 43 (1991), pp. 569-585
[2] L. Costa, R.M. Miró-Roig, Derived category of toric varieties with small Picard number, preprint.
[3] Tilting sheaves on toric varieties, Math. Z., Volume 248 (2004) no. 4, pp. 849-865
[4] A counterexample to King's conjecture, Compos. Math., Volume 142 (2006), pp. 1507-1521
[5] L. Hille, M. Perling, Exceptional sequences of invertible sheaves on rational surfaces, Compos. Math., , in press. | arXiv
[6] A. King, Titling bundles on some rational surfaces, preprint at http://www.maths.bath.ac.uk/~masadk/papers/.
[7] M. Lason, M. Michalek, On the derived categories of toric varieties with Picard number three, preprint.
Cited by Sources:
☆ The author was supported by a grant of Polish MNiSW (N N201 413539).
Comments - Policy