[Une relation entre nombre de points entiers, volumes des faces et degré du discriminant des polytopes entiers non singuliers]
We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than
Nous donnons une formule pour le degré du discriminant dʼune variété torique projective non singulière associée à un polytope entier P, en terme du nombre de points entiers des intérieurs de dilatations de faces de dimension supérieure ou égale à
Accepté le :
Publié le :
Alicia Dickenstein 1 ; Benjamin Nill 2 ; Michèle Vergne 3
@article{CRMATH_2012__350_5-6_229_0, author = {Alicia Dickenstein and Benjamin Nill and Mich\`ele Vergne}, title = {A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes}, journal = {Comptes Rendus. Math\'ematique}, pages = {229--233}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.02.001}, language = {en}, }
TY - JOUR AU - Alicia Dickenstein AU - Benjamin Nill AU - Michèle Vergne TI - A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes JO - Comptes Rendus. Mathématique PY - 2012 SP - 229 EP - 233 VL - 350 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2012.02.001 LA - en ID - CRMATH_2012__350_5-6_229_0 ER -
%0 Journal Article %A Alicia Dickenstein %A Benjamin Nill %A Michèle Vergne %T A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes %J Comptes Rendus. Mathématique %D 2012 %P 229-233 %V 350 %N 5-6 %I Elsevier %R 10.1016/j.crma.2012.02.001 %G en %F CRMATH_2012__350_5-6_229_0
Alicia Dickenstein; Benjamin Nill; Michèle Vergne. A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 229-233. doi : 10.1016/j.crma.2012.02.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.02.001/
[1] Multiples of lattice polytopes without interior lattice points, Mosc. Math. J., Volume 7 (2007), pp. 195-207
[2] Computing the Continuous Discretely: Integer Point Enumeration in Polyhedra, Undergraduate Texts in Mathematics, Springer-Verlag, 2007
[3] Points entiers dans les polyèdres convexes, Ann. Sci. Ecole Norm. Sup., Volume 21 (1988), pp. 653-663
[4] Projective duality of toric manifolds and defect polytopes, Proc. London Math. Soc., Volume 93 (2006), pp. 85-104
[5] A simple combinatorial criterion for projective toric manifolds with dual defect, Math. Res. Lett., Volume 17 (2010) no. 3, pp. 435-448
[6] Polynômes arithmétiques et méthode des polyèdres en combinatoire, International Series of Numerical Mathematics, vol. 35, Birkhäuser Verlag, 1977
[7] Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994
[8] Cayley decompositions of lattice polytopes and upper bounds for
[9] The boundary volume of a lattice polytope, 2010 (preprint) | arXiv
[10] Non-commutative symmetric functions and an amazing matrix, 2011 (preprint) | arXiv
[11] A monotonicity property of h-vectors and
[12] Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, 1995
- On defectivity of families of full-dimensional point configurations, Proceedings of the American Mathematical Society. Series B, Volume 7 (2020), pp. 43-51 | DOI:10.1090/bproc/46 | Zbl:1442.14164
Cité par 1 document. Sources : zbMATH
Commentaires - Politique