[Localisation de sources étendues à partir d'un nombre fini de fréquences]
A phase conjugation algorithm for localizing the spatial support of an extended radiating current source from boundary measurements of the electric field over a finite set of frequencies is presented. An imaging function using a full frequency bandwidth is established and analyzed. It is subsequently adopted to the case of finite frequency measurements. Finally, the algorithm is blended with
Dans cette note, nous présentons un algorithme de conjugaison de phase pour la reconstruction d'une source étendue à partir de mesures de champ électrique obtenues pour un ensemble fini de fréquences. Nous commençons par introduire et analyser une fonctionnelle d'imagerie à partir de mesures obtenues pour un intervalle de fréquences. Ensuite, nous proposons une régularisation
Accepté le :
Publié le :
Abdul Wahab 1 ; Amer Rasheed 1 ; Rab Nawaz 2 ; Saman Anjum 1
@article{CRMATH_2014__352_11_917_0, author = {Abdul Wahab and Amer Rasheed and Rab Nawaz and Saman Anjum}, title = {Localization of extended current source with finite frequencies}, journal = {Comptes Rendus. Math\'ematique}, pages = {917--921}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.09.009}, language = {en}, }
TY - JOUR AU - Abdul Wahab AU - Amer Rasheed AU - Rab Nawaz AU - Saman Anjum TI - Localization of extended current source with finite frequencies JO - Comptes Rendus. Mathématique PY - 2014 SP - 917 EP - 921 VL - 352 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2014.09.009 LA - en ID - CRMATH_2014__352_11_917_0 ER -
Abdul Wahab; Amer Rasheed; Rab Nawaz; Saman Anjum. Localization of extended current source with finite frequencies. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 917-921. doi : 10.1016/j.crma.2014.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.009/
[1] Introduction to Mathematics of Emerging Biomedical Imaging, Mathématiques et Applications, vol. 62, Springer-Verlag, Berlin, 2008
[2] Time reversal in attenuating acoustic media, Mathematical and Statistical Methods for Imaging, Contemporary Mathematics, vol. 548, American Mathematical Society, Providence, USA, 2011, pp. 151-163
[3] Noise source localization in an attenuating medium, SIAM J. Appl. Math., Volume 72 (2012), pp. 317-336
[4] Photoacoustic imaging for attenuating acoustic media, Mathematical Modeling in Biomedical Imaging II, Lecture Notes in Mathematics, vol. 2035, Springer-Verlag, Berlin, 2012, pp. 57-84
[5] Time reversal algorithms in viscoelastic media, Eur. J. Appl. Math., Volume 24 (2013), pp. 565-600
[6] Mathematical and Statistical Methods for Multistatic Imaging, Lecture Notes in Mathematics, vol. 2098, Springer, 2014
[7] A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., Volume 2 (2009), pp. 183-202
[8] Theory of the time reversal cavity for electromagnetic fields, Opt. Lett., Volume 32 (2007), pp. 3107-3109
[9] Reverse time migration for extended obstacles: electromagnetic waves, Inverse Probl., Volume 29 (2013) (Paper ID. 085006)
[10] Time reversed acoustics, Phys. Today, Volume 50 (1997) no. 3, pp. 34-40
[11] Wave Propagation and Time Reversal in Randomly Layered Media, Springer, 2007
[12] Electromagnetic time reversal and scattering by a small dielectric inclusion, J. Phys. Conf. Ser., Volume 386 (2012) (Paper ID. 012010)
[13] Electromagnetic source identification using multiple frequency information, Inverse Probl., Volume 28 (2012) (Paper ID. 115002)
[14] Electromagnetic time reversal algorithms and localization in lossy dielectric media, Commun. Theor. Phys. (2014) (forthcoming)
Cité par Sources :
Commentaires - Politique