Comptes Rendus
Géométrie
An inequality for the minimum affine curvature of a plane curve
[Une inégalité sur la courbure affine minimale par le flot de raccourcissement des courbes]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 139-142.

Comme application du flot de raccourcissement des courbes, nous prouverons une inégalité sur la courbure affine minimale d’une courbe fermée simple lisse dans le plan euclidien.

As an application of the affine curve shortening flow, we will prove an inequality for minimum affine curvature of a smooth simple closed curve in the Euclidean plane.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.19
Classification : 52A40, 53A04, 53C44
Yunlong Yang 1

1 School of Science, Dalian Maritime University, Dalian, 116026, People’s Republic of China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_2_139_0,
     author = {Yunlong Yang},
     title = {An inequality for the minimum affine curvature of a plane curve},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {139--142},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {2},
     year = {2020},
     doi = {10.5802/crmath.19},
     language = {en},
}
TY  - JOUR
AU  - Yunlong Yang
TI  - An inequality for the minimum affine curvature of a plane curve
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 139
EP  - 142
VL  - 358
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.19
LA  - en
ID  - CRMATH_2020__358_2_139_0
ER  - 
%0 Journal Article
%A Yunlong Yang
%T An inequality for the minimum affine curvature of a plane curve
%J Comptes Rendus. Mathématique
%D 2020
%P 139-142
%V 358
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmath.19
%G en
%F CRMATH_2020__358_2_139_0
Yunlong Yang. An inequality for the minimum affine curvature of a plane curve. Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 139-142. doi : 10.5802/crmath.19. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.19/

[1] Jun Ai; Kai-Seng Chou; Juncheng Wei Self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differ. Equ., Volume 13 (2001) no. 3, pp. 311-337 | MR | Zbl

[2] Luis Alvarez; Frédéric Guichard; Pierre-Louis Lions; Jean- Michel Morel Axioms and fundamental equations of image processing, Arch. Ration. Mech. Anal., Volume 132 (1993) no. 3, pp. 199-257 | DOI | MR | Zbl

[3] Ben Andrews Contraction of convex hypersurfaces by their affine normal, J. Differ. Geom., Volume 43 (1996) no. 2, pp. 207-230 | DOI | MR | Zbl

[4] Ben Andrews The affine curve-lengthening flow, J. Reine Angew. Math., Volume 506 (1999), pp. 48-83 | MR | Zbl

[5] Sigurd Angenent; Guillermo Sapiro; Allen Tannenbaum On the affine heat equation for non-convex curves, J. Am. Math. Soc., Volume 11 (1998) no. 3, pp. 601-634 | DOI | MR | Zbl

[6] Kai-Seng Chou; Xi-Ping Zhu The Curve Shortening Problem, Chapman & Hall/CRC, 2001 | Zbl

[7] Vincenzo Ferone; Carlo Nitsch; Cristina Trombetti On the maximal mean curvature of a smooth surface, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 9, pp. 891-895 | DOI | MR | Zbl

[8] M. Gage; Richard S. Hamilton The heat equation shrinking convex plane curves, J. Differ. Geom., Volume 23 (1986), pp. 69-96 | DOI | MR | Zbl

[9] Matthew A. Grayson The heat equation shrinks embedded plane curves to round points, J. Differ. Geom., Volume 26 (1987), pp. 285-314 | DOI | MR | Zbl

[10] Richard S. Hamilton Four-manifolds with positive curvature operator, J. Differ. Geom., Volume 24 (1986), pp. 153-179 | DOI | MR | Zbl

[11] Ralph Howard; Andrejs Treibergs A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature, Rocky Mt. J. Math., Volume 25 (1995) no. 2, pp. 635-684 | DOI | MR | Zbl

[12] Mohammad N. Ivaki Centro-affine curvature flows on centrally symmetric convex curves, Trans. Am. Math. Soc., Volume 366 (2014) no. 11, pp. 5671-5692 | DOI | MR | Zbl

[13] Meiyue Jiang; Liping Wang; Juncheng Wei 2π-periodic self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differ. Equ., Volume 41 (2011) no. 3-4, pp. 535-565 | DOI | MR | Zbl

[14] Peter J. Olver; Guillermo Sapiro; Allen Tannenbaum Differential invariant signatures and flows in computer vision: A symmetry group approach, Geometry-Driven Diffusion in Computer Vision (Computational Imaging and Vision), Volume 1, Springer, 1994, pp. 205-306

[15] Konstantin Pankrashkin An inequality for the maximum curvature through a geometric flow, Arch. Math., Volume 105 (2015) no. 3, pp. 297-300 | DOI | MR | Zbl

[16] Konstantin Pankrashkin; Nicolas Popoff Mean curvature bounds and eigenvalues of Robin Laplacians, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 2, pp. 1947-1961 | DOI | MR | Zbl

[17] G. Pestov; Vladimir Ionin On the largest possible circle imbedded in a given closed curve, Dokl. Akad. Nauk SSSR, Volume 127 (1959), pp. 1170-1172 | MR | Zbl

[18] Guillermo Sapiro; Allen Tannenbaum On affine plane curve evolution, J. Funct. Anal., Volume 119 (1994) no. 1, pp. 79-120 | DOI | MR | Zbl

[19] Buchin Su Affine Differential Geometry, Gordon and Breach, Science Publishers, 1983 | Zbl

Cité par Sources :

Commentaires - Politique