We give the cumulative distribution function of
These results are large deviations expansions for estimates, since the maximum need not be standardized to have a limit. In fact, such a limit need not exist.
Accepté le :
Publié le :
Christopher S. Withers 1 ; Saralees Nadarajah 2

@article{CRMATH_2020__358_8_909_0, author = {Christopher S. Withers and Saralees Nadarajah}, title = {The distribution of the maximum of an {ARMA(1,} 1) process}, journal = {Comptes Rendus. Math\'ematique}, pages = {909--916}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {8}, year = {2020}, doi = {10.5802/crmath.111}, language = {en}, }
TY - JOUR AU - Christopher S. Withers AU - Saralees Nadarajah TI - The distribution of the maximum of an ARMA(1, 1) process JO - Comptes Rendus. Mathématique PY - 2020 SP - 909 EP - 916 VL - 358 IS - 8 PB - Académie des sciences, Paris DO - 10.5802/crmath.111 LA - en ID - CRMATH_2020__358_8_909_0 ER -
Christopher S. Withers; Saralees Nadarajah. The distribution of the maximum of an ARMA(1, 1) process. Comptes Rendus. Mathématique, Volume 358 (2020) no. 8, pp. 909-916. doi : 10.5802/crmath.111. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.111/
[1] Handbook of Mathematical Functions (Milton Abramowitz; Irene A. Stegun, eds.), Applied Mathematics Series, 55, U.S. Department of Commerce, National Bureau of Standards, 1964 | Zbl
[2] The rate of convergence of extremes of stationary normal sequences, Adv. Appl. Probab., Volume 15 (1983), pp. 54-80 | DOI | MR | Zbl
[3] Extreme value theory for moving average processes, Ann. Probab., Volume 14 (1986), pp. 612-652 | DOI | MR | Zbl
[4] The distribution of the maximum of a first order autoregressive process: The continuous case, Metrika, Volume 74 (2011) no. 2, pp. 247-266 | DOI | MR | Zbl
[5] The distribution of the maximum of a first order moving average: The continuous case, Extremes, Volume 17 (2014) no. 1, pp. 1-24 | DOI | MR | Zbl
[6] The distribution of the maximum of a second order autoregressive process: The continuous case, 2020 (Technical Report, Department of Mathematics, University of Manchester, UK)
Cité par Sources :
Commentaires - Politique