logo CRAS
Comptes Rendus. Mathématique

Topologie
Intersection norms and one-faced collections
Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 941-956.

Intersection norms are integer norms on the first homology group of a surface. In this article, we give examples of polytopes which are not the dual unit balls of intersection norms, answering a question asked in [2]. On the way, we investigate the set of collections of curves on Σ 2 whose complement is a disk.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmath.118
@article{CRMATH_2020__358_8_941_0,
     author = {Abdoul Karim Sane},
     title = {Intersection norms and one-faced collections},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {941--956},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {8},
     year = {2020},
     doi = {10.5802/crmath.118},
     language = {en},
}
Abdoul Karim Sane. Intersection norms and one-faced collections. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 941-956. doi : 10.5802/crmath.118. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.118/

[1] Tarik Aougab; Shinnyih Huang Minimally intersecting filling pairs on surfaces, Algebr. Geom. Topol., Volume 15 (2015) no. 2, pp. 903-932 | Article | MR 3342680 | Zbl 1334.57013

[2] Marcos Cossarini; Pierre Dehornoy Intersection norms on surfaces and Birkhoff sections for geodesic flows (2016) (https://arxiv.org/abs/1604.06688)

[3] Albert Fathi; François Laudenbach; Valentin Poénaru Thurston’s work on surfaces, Mathematical Notes, Volume 48, Princeton University Press, 2012 | MR 3053012 | Zbl 1244.57005

[4] Joel Hass; Peter Scott Shortening curves on surfaces, Topology, Volume 33 (1994) no. 1, pp. 25-43 | Article | MR 1259513 | Zbl 0798.58019

[5] Mikael de la Salle On norms taking integer values on the integer lattice, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 6, pp. 611-613 | Article | MR 3494330 | Zbl 1342.57016

[6] Abdoul Karim Sane On dual unit balls of Thurston norms (2020) (https://arxiv.org/abs/2004.04407)

[7] William P. Thurston A norm for the homology of 3-manifolds, Two papers: Genera of the arborescent links and A norm for the homology of 3-manifolds (Memoirs of the American Mathematical Society) Volume 339, American Mathematical Society, 1986, pp. 99-130 | Zbl 0585.57006

[8] Vladimir Turaev A norm for the cohomology of 2-complexes, Algebr. Geom. Topol., Volume 2 (2002), pp. 137-155 | Article | MR 1885218 | Zbl 1014.57002