We present a short new proof of the canonical polynomial van der Waerden theorem, recently established by Girão.
Nous présentons une nouvelle démonstration courte du théorème de van der Waerden polynomial canonique, récemment établi par Girão.
Revised:
Accepted:
Published online:
Jacob Fox 1; Yuval Wigderson 1; Yufei Zhao 2
@article{CRMATH_2020__358_8_957_0, author = {Jacob Fox and Yuval Wigderson and Yufei Zhao}, title = {A short proof of the canonical polynomial van der {Waerden} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {957--959}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {8}, year = {2020}, doi = {10.5802/crmath.101}, language = {en}, }
TY - JOUR AU - Jacob Fox AU - Yuval Wigderson AU - Yufei Zhao TI - A short proof of the canonical polynomial van der Waerden theorem JO - Comptes Rendus. Mathématique PY - 2020 SP - 957 EP - 959 VL - 358 IS - 8 PB - Académie des sciences, Paris DO - 10.5802/crmath.101 LA - en ID - CRMATH_2020__358_8_957_0 ER -
Jacob Fox; Yuval Wigderson; Yufei Zhao. A short proof of the canonical polynomial van der Waerden theorem. Comptes Rendus. Mathématique, Volume 358 (2020) no. 8, pp. 957-959. doi : 10.5802/crmath.101. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.101/
[1] Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Am. Math. Soc., Volume 9 (1996) no. 3, pp. 725-753 | DOI | MR | Zbl
[2] Old and new problems and results in combinatorial number theory, Monographies de l’Enseignement Mathématique, 28, L’Enseignement Mathématique, 1980, 128 pages | MR | Zbl
[3] A combinatorial theorem, J. Lond. Math. Soc., Volume 25 (1950), pp. 249-255 | DOI | MR | Zbl
[4] A canonical polynomial van der Waerden’s theorem (https://arxiv.org/abs/2004.07766) | Zbl
[5] Introduction to number theory, Springer, 1982 | MR | Zbl
[6] An elementary solution of the problem of Waring by Schnirelman’s method, Mat. Sb., N. Ser., Volume 12(54) (1943), pp. 225-230 | MR | Zbl
[7] On sets of integers containing no elements in arithmetic progression, Acta Arith., Volume 27 (1975), pp. 199-245 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy