logo CRAS
Comptes Rendus. Mathématique
Geometry
Combinatorics of Bricard’s octahedra
Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 7-38.

We re-prove the classification of motions of an octahedron — obtained by Bricard at the beginning of the XX century — by means of combinatorial objects satisfying some elementary rules. The explanations of these rules rely on the use of a well-known creation of modern algebraic geometry, the moduli space of stable rational curves with marked points, for the description of configurations of graphs on the sphere. Once one accepts the objects and the rules, the classification becomes elementary (though not trivial) and can be enjoyed without the need of a very deep background on the topic.

Dans cet article, on donne une preuve alternative de la classification des mouvements d’un octaèdre, originalement obtenue par Bricard au début du XX e siècle. On utilise une construction combinatoire avec un certain nombre de règles essentielles. Ces règles reposent sur une machinerie bien connue dans la géométrie algébrique moderne : l’espace de modules des courbes rationnelles stables avec des points marqués, utilisé pour codifier les configurations de graphes sur la sphère. On introduit un certain nombre d’objets et de règles : une fois que l’on les assume, la classification des mouvements d’un octaèdre telle que l’on expose devient élémentaire (bien que pas triviale) et peut être appréciée par le lecteur sans besoin de connaissances préalables très approfondies sur le sujet. We thank Celeste Damiani for helping us with the translation into French.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.132
Classification: 52C25
Matteo Gallet 1; Georg Grasegger 2; Jan Legerský 3, 4; Josef Schicho 4

1 International School for Advanced Studies/Scuola Internazionale Superiore di Studi Avanzati (ISAS/SISSA), Trieste, Italy
2 Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
3 Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic
4 Johannes Kepler University Linz, Research Institute for Symbolic Computation (RISC), Linz, Austria
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2021__359_1_7_0,
     author = {Matteo Gallet and Georg Grasegger and Jan Legersk\'y and Josef Schicho},
     title = {Combinatorics of {Bricard{\textquoteright}s} octahedra},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {7--38},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {1},
     year = {2021},
     doi = {10.5802/crmath.132},
     language = {en},
}
TY  - JOUR
TI  - Combinatorics of Bricard’s octahedra
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 7
EP  - 38
VL  - 359
IS  - 1
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.132
DO  - 10.5802/crmath.132
LA  - en
ID  - CRMATH_2021__359_1_7_0
ER  - 
%0 Journal Article
%T Combinatorics of Bricard’s octahedra
%J Comptes Rendus. Mathématique
%D 2021
%P 7-38
%V 359
%N 1
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.132
%R 10.5802/crmath.132
%G en
%F CRMATH_2021__359_1_7_0
Matteo Gallet; Georg Grasegger; Jan Legerský; Josef Schicho. Combinatorics of Bricard’s octahedra. Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 7-38. doi : 10.5802/crmath.132. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.132/

[1] Victor Alexandrov The Dehn invariants of the Bricard octahedra, J. Geom., Volume 99 (2010) no. 1–2, pp. 1-13 | DOI | MR | Zbl

[2] Victor Alexandrov; Robert Connelly Flexible suspensions with a hexagonal equator, Ill. J. Math., Volume 55 (2011) no. 1, pp. 127-155 | DOI | MR | Zbl

[3] J. Eddie Baker An analysis of the Bricard linkages, Mech. Mach. Theory, Volume 15 (1980) no. 4, pp. 267-286 | DOI

[4] J. Eddie Baker On Bricard’s doubly collapsible octahedron and its planar, spherical and skew counterparts, J. Franklin Inst., Volume 332B (1995) no. 6, pp. 657-679 | DOI | MR | Zbl

[5] J. Eddie Baker On the skew network corresponding to Bricard’s doubly collapsible octahedron, Proc. Inst. Mech. Eng. C, Volume 223 (2009) no. 5, pp. 1213-1221 | DOI

[6] Geoffrey T. Bennett Deformable octahedra, Proc. Lond. Math. Soc., Volume 10 (1912) no. 1, pp. 309-343 | DOI | Zbl

[7] Raoul Bricard Mémoire sur la théorie de l’octaèdre articulé, J. Math. Pures Appl., Volume 3 (1897), pp. 113-148 | Zbl

[8] Raoul Bricard Leçons de cinématique. I Cinématique théoretique, Gauthier-Villars, 1926 | Zbl

[9] Raoul Bricard Leçons de cinématique. II Cinématique appliquée, Gauthier-Villars, 1927 | Zbl

[10] A. V. Bushmelev; Idzhad K. Sabitov Configuration spaces of Bricard octahedra, Ukr. Geom. Sb., Volume 33 (1990), pp. 36-41 | DOI | Zbl

[11] Augustin Cauchy Recherche sur les polyèdres — premier mémoire, J. Éc. Polytech., Math., Volume 9 (1813) no. 16, pp. 66-86 (available at https://gallica.bnf.fr/ark:/12148/bpt6k90193x/f13)

[12] Robert Connelly A counterexample to the rigidity conjecture for polyhedra, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 333-338 | DOI | Numdam | Zbl

[13] Robert Connelly The rigidity of suspensions, J. Differ. Geom., Volume 113 (1978) no. 3, pp. 399-408 | DOI | MR | Zbl

[14] Alexander A. Gaifullin; Leonid S. Ignashchenko Dehn invariant and scissors congruence of flexible polyhedra, Proc. Steklov Inst. Math., Volume 302 (2018) no. 1, pp. 130-145 | DOI | Zbl

[15] Matteo Gallet; Georg Grasegger; Jan Legerský; Josef Schicho On the existence of paradoxical motions of generically rigid graphs on the sphere (2019) (https://arxiv.org/abs/1908.00467, accepted for publication in SIAM Journal on Discrete Mathematics)

[16] Mohammad Ghomi Open problems in geometry of curves and surfaces (2020) (http://people.math.gatech.edu/~ghomi/Papers/op.pdf)

[17] Herman Gluck Almost all simply connected closed surfaces are rigid, Geometric topology (Proc. Conf., Park City, Utah, 1974) (Lecture Notes in Mathematics), Volume 438 (1974), pp. 225-239 | DOI | Zbl

[18] Ivan Izmestiev Classification of flexible Kokotsakis polyhedra with quadrangular base, Int. Math. Res. Not., Volume 2017 (2017) no. 3, pp. 715-808 | DOI | MR | Zbl

[19] Antonios Kokotsakis Über bewegliche Polyeder, Math. Ann., Volume 107 (1933) no. 1, pp. 627-647 | DOI | Zbl

[20] Henri Lebesgue Octaèdres articulés de Bricard, Enseign. Math., Volume 13 (1967), pp. 175-185 | Zbl

[21] Sergeĭ N. Mikhalëv Some necessary metric conditions for the flexibility of suspensions, Vestn. Mosk. Univ., Volume 77 (2001) no. 3, pp. 15-21 | MR | Zbl

[22] Sergeĭ N. Mikhalëv Isometric realizations of Bricard octahedra of the first and second types with known volumes, Fundam. Prikl. Mat., Volume 8 (2002) no. 3, pp. 755-768 | MR | Zbl

[23] Georg Nawratil Flexible octahedra in the projective extension of the Euclidean 3-space, J. Geom. Graph., Volume 14 (2010) no. 2, pp. 147-169 | MR | Zbl

[24] Georg Nawratil; Arvin Rasoulzadeh Kinematically redundant octahedral motion platform for virtual reality simulations, New Advances in Mechanism and Machine Science, Volume 22, Springer, 2018, pp. 387-400 | DOI

[25] Gerald D. Nelson Extending Bricard Octahedra (2010) (https://arxiv.org/abs/1011.5193)

[26] Gerald D. Nelson Generalizations of Bricard Octahedra (2012) (https://arxiv.org/abs/1206.2588)

[27] Bernd Schulze Symmetry as a sufficient condition for a finite flex, SIAM J. Discrete Math., Volume 24 (2010) no. 4, pp. 1291-1312 | DOI | MR | Zbl

[28] Hellmuth Stachel Zur Einzigkeit der Bricardschen Oktaeder, J. Geom., Volume 28 (1987) no. 1, pp. 41-56 | DOI | MR | Zbl

[29] Hellmuth Stachel A kinematic approach to Kokotsakis meshes, Comput. Aided Geom. Des., Volume 27 (2010) no. 6, pp. 428-437 | DOI | MR | Zbl

[30] Hellmuth Stachel Flexible polyhedral surfaces with two flat poses, Symmetry, Volume 7 (2015) no. 2, pp. 774-787 | DOI | MR | Zbl

Cited by Sources: