The class of Worpitzky-compatible subarrangements of a Weyl arrangement together with an associated Eulerian polynomial was recently introduced by Ashraf, Yoshinaga and the first author, which brings the characteristic and Ehrhart quasi-polynomials into one formula. The subarrangements of the braid arrangement, the Weyl arrangement of type
Accepté le :
Publié le :
Tan Nhat Tran 1 ; Akiyoshi Tsuchiya 2

@article{CRMATH_2021__359_6_665_0, author = {Tan Nhat Tran and Akiyoshi Tsuchiya}, title = {Worpitzky-compatible subarrangements of braid arrangements and cocomparability graphs}, journal = {Comptes Rendus. Math\'ematique}, pages = {665--674}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.210}, language = {en}, }
TY - JOUR AU - Tan Nhat Tran AU - Akiyoshi Tsuchiya TI - Worpitzky-compatible subarrangements of braid arrangements and cocomparability graphs JO - Comptes Rendus. Mathématique PY - 2021 SP - 665 EP - 674 VL - 359 IS - 6 PB - Académie des sciences, Paris DO - 10.5802/crmath.210 LA - en ID - CRMATH_2021__359_6_665_0 ER -
Tan Nhat Tran; Akiyoshi Tsuchiya. Worpitzky-compatible subarrangements of braid arrangements and cocomparability graphs. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 665-674. doi : 10.5802/crmath.210. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.210/
[1] The freeness of ideal subarrangements of Weyl arrangements, J. Eur. Math. Soc., Volume 18 (2016) no. 6, pp. 1339-1348 | MR | Zbl
[2] Eulerian polynomials for subarrangements of Weyl arrangements, Adv. Appl. Math., Volume 120 (2020), 102064, 24 pages | MR | Zbl
[3] On a refinement of the generalized Catalan numbers for Weyl groups, Trans. Am. Math. Soc., Volume 357 (2005) no. 1, pp. 179-196 | DOI | MR | Zbl
[4] Expansions of chromatic polynomials and log-concavity, Trans. Am. Math. Soc., Volume 332 (1992) no. 2, pp. 729-756 | DOI | MR | Zbl
[5] On the cover polynomial of a digraph, J. Comb. Theory, Ser. B, Volume 65 (1995) no. 2, pp. 273-290 | DOI | MR | Zbl
[6] Free hyperplane arrangements between
[7] Methodus universalis series summandi ulterius promota, Commentarii Acd. Scientiarum Imperialis Petropolitanae, Volume 8 (1736), pp. 147-158 (Reprinted in his Opera Omnia, series 1, volume 14, 124-137, 1741)
[8] Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung., Volume 18 (1967), pp. 25-66 | DOI | MR | Zbl
[9] A characterization of comparability graphs and interval graphs, Can. J. Math., Volume 16 (1964), pp. 539-548 | DOI | MR | Zbl
[10] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990 | MR | Zbl
[11] Free arrangements of hyperplanes and supersolvable lattices, Adv. Math., Volume 52 (1984) no. 3, pp. 248-258 | DOI | MR | Zbl
[12] The Topology of the Coloring Complex, J. Algebr. Comb., Volume 21 (2005) no. 3, pp. 311-329 | DOI | MR | Zbl
[13] Basic derivations for subarrangements of Coxeter arrangements, J. Algebr. Comb., Volume 2 (1993) no. 3, pp. 291-320 | DOI | MR | Zbl
[14] Domination on cocomparability graphs, SIAM J. Discrete Math., Volume 6 (1993) no. 3, pp. 400-417 | DOI | MR | Zbl
[15] Optimal greedy algorithms for indifference graphs, Comput. Math. Appl., Volume 25 (1993) no. 7, pp. 15-25 | DOI | MR | Zbl
[16] Modular decomposition and transitive orientation, Discrete Math., Volume 201 (1999) no. 1-3, pp. 189-241 | DOI | MR | Zbl
[17] An optimal greedy heuristic to color interval graphs, Inf. Process. Lett., Volume 37 (1991) no. 1, pp. 21-25 | DOI | MR | Zbl
[18] Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer, 1992 | MR | Zbl
[19] Eulerian numbers, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 2015 | Zbl
[20] Alcoves corresponding to an affine Weyl group, J. Lond. Math. Soc., Volume 35 (1987), pp. 42-55 | MR | Zbl
[21] Supersolvable lattices, Algebra Univers., Volume 2 (1972), pp. 197-217 | DOI | MR | Zbl
[22] The coloring ideal and coloring complex of a graph, J. Algebr. Comb., Volume 14 (2001) no. 1, pp. 73-84 | DOI | MR | Zbl
[23] Signed graphs and the freeness of the Weyl subarrangements of type
[24] On floors and ceilings of the
[25] Combinatorics and partially ordered sets: Dimension theory, Johns Hopkins Series in the Mathematical Sciences, Johns Hopkins University Press, 1992 | Zbl
[26] Worpitzky partitions for root systems and characteristic quasi-polynomials, Tôhoku Math. J., Volume 70 (2018) no. 1, pp. 39-63 | MR | Zbl
Cité par Sources :
Commentaires - Politique