A result of Gluck is that any finite group
Accepté le :
Publié le :
DOI : 10.5802/crmath.301
Yong Yang 1, 2

@article{CRMATH_2022__360_G6_583_0, author = {Yong Yang}, title = {On the number of prime divisors of character degrees and conjugacy classes of a finite group}, journal = {Comptes Rendus. Math\'ematique}, pages = {583--588}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.301}, zbl = {07547260}, language = {en}, }
Yong Yang. On the number of prime divisors of character degrees and conjugacy classes of a finite group. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 583-588. doi : 10.5802/crmath.301. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.301/
[1] Conjugacy classes of small sizes in the linear and unitary groups, J. Group Theory, Volume 16 (2013) no. 6, pp. 851-874 | DOI | MR | Zbl
[2] Atlas of Finite Groups. Maximal subgroups and ordinary characters for simple groups, Clarendon Press, 1985 (with comput. assist. from J. G. Thackray) | Zbl
[3] Group Representation Theory (in 2 parts). Part A: Ordinary representation theory, Pure and Applied Mathematics, 7, Marcel Dekker, 1971 | MR | Zbl
[4] A character theoretic condition for
[5]
[6] The largest irreducible character degree of a finite group, Can. J. Math., Volume 37 (1985), pp. 442-451 | DOI | MR | Zbl
[7] Data for Finite Groups of Lie Type and Related Algebraic Groups (http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/index.html)
[8] A variation on theorems of Jordan and Gluck, J. Algebra, Volume 301 (2006) no. 1, pp. 274-279 | DOI | MR | Zbl
[9] Low-dimensional complex characters of the symplectic and orthogonal groups, Commun. Algebra, Volume 38 (2010) no. 3, pp. 1157-1197 | DOI | MR | Zbl
[10] Unipotent elements of finite groups of Lie type and realization fields of their complex representations, J. Algebra, Volume 271 (2004) no. 1, pp. 327- 390 | DOI | MR | Zbl
[11] Orbits of the actions of finite solvable groups, J. Algebra, Volume 321 (2009) no. 7, pp. 2012-2021 | DOI | MR | Zbl
[12] A variation on a theorem of Gluck, Monatsh. Math., Volume 185 (2018) no. 1, pp. 159-162 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique