Comptes Rendus
Homogenization of two-phase flow: high contrast of phase permeability
[Homogénéisation d'écoulement diphasique : grand contraste de perméabilité d'une phase]
Comptes Rendus. Mécanique, Volume 331 (2003) no. 1, pp. 9-15.

On considére l'équation d'écoulement diphasique stationnaire non-linéaire dans le cas où une phase est peu perméable dans une zone alors que la perméabilité efficace est haute dans l'ensemble complémentaire ; la seconde phase n'a pas de contraste de perméabilité dans les différentes zones. L'homogénéisation de ce problème conduit à un modèle homogénéisé où la perméabilité macroscopique efficace de la seconde phase dépend du gradient et des dérivées secondes de la pression macroscopique de la prémiere phase. Cet effet ne peut pas être obtenu par l'homogénéisation classique (i.e. avec un seul petit paramétre).

The steady-state two-phase flow non-linear equation is considered in the case when one of phases has low effective permeability in some periodic set, while on the complementary set it is high; the second phase has no contrast of permeabilities in different zones. A homogenization procedure gives the homogenized model with macroscopic effective permeability of the second phase depending on the gradient and on the second order derivatives of the macroscopic pressure of the first phase. This effect cannot be obtained by classical (one small parameter) homogenization.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-0721(02)00008-6
Keywords: Computational fluid mechanics, Homogenization, Steady-state two-phase flow, Contrasting effective phase permeability
Mots-clés : Mécanique des fluides numérique, Homogénéisation, Écoulement diphasique stationnaire, Contraste de perméabilité d'une phase

Gregory P. Panasenko 1, 2 ; George Virnovsky 3

1 Équipe d'analyse numérique, UPRES EA 3058, Université de Saint-Etienne, 23, rue Paul Michelon, 42023 Saint-Etienne, France
2 Laboratoire de modélisation en mécanique – CNRS UMR 7607, Université Pierre et Marie Curie – Paris 6, 8, rue du Capitaine Scott, 75015 Paris, France
3 RF – Rogaland Research Postboks 8046, Ullandhaug, 4068 Stavanger, Norway
@article{CRMECA_2003__331_1_9_0,
     author = {Gregory P. Panasenko and George Virnovsky},
     title = {Homogenization of two-phase flow: high contrast of phase permeability},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {9--15},
     publisher = {Elsevier},
     volume = {331},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-0721(02)00008-6},
     language = {en},
}
TY  - JOUR
AU  - Gregory P. Panasenko
AU  - George Virnovsky
TI  - Homogenization of two-phase flow: high contrast of phase permeability
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 9
EP  - 15
VL  - 331
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-0721(02)00008-6
LA  - en
ID  - CRMECA_2003__331_1_9_0
ER  - 
%0 Journal Article
%A Gregory P. Panasenko
%A George Virnovsky
%T Homogenization of two-phase flow: high contrast of phase permeability
%J Comptes Rendus. Mécanique
%D 2003
%P 9-15
%V 331
%N 1
%I Elsevier
%R 10.1016/S1631-0721(02)00008-6
%G en
%F CRMECA_2003__331_1_9_0
Gregory P. Panasenko; George Virnovsky. Homogenization of two-phase flow: high contrast of phase permeability. Comptes Rendus. Mécanique, Volume 331 (2003) no. 1, pp. 9-15. doi : 10.1016/S1631-0721(02)00008-6. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)00008-6/

[1] J. Bear Dynamics of Flows Fluids in Porous Media, Dover, 1972

[2] N.S. Bakhvalov Averaging of nonlinear partial differential equations with rapidly oscillating coefficients, Dokl. Akad. Nauk SSSR, Volume 225 (1975) no. 2, pp. 249-252

[3] N.S. Bakhvalov; G.P. Panasenko Homogenization: Averaging Processes in Periodic Media, Nauka, Moscow, 1984 (English translation: Kluwer Academic, Dordrecht, 1989)

[4] A. Bourgeat; A. Hidani Effective model of two-phase flow in a porous medium made of different rock types, Appl. Anal., Volume 56 (1995), pp. 381-399

[5] G.A. Virnovsky; H.A. Friis; A. Lohne; A. Skauge Up-scaling of multiphase flow functions using steady-state flow model, Proceedings ATCE, Houston, TX, 1999 (SPE 56413)

[6] S.M. Skjaeveland; L.M. Siqveland; A. Kjosavik; W.L. Hammervold; G.A. Virnovsky Capillary pressure correlation for mixed-wet reservoirs, SPE Reservoir Evaluation and Engineering (2000), pp. 60-67

[7] A. Bourgeat; M. Panfilov Effective two-phase flow through highly heterogeneous porous media: capillary nonequilibrum effects, Comput. Geosci., Volume 2 (1998), pp. 191-215

[8] C.J. Van Duijn; A. Mikelic; I.S. Pop Effective equations for two-phase flow with trapping on the micro scale, SIAM J. Appl. Math., Volume 62 (2002), pp. 1531-1568

[9] M. Dale; S. Ekrann; J. Mykkeltveit; G. Virnovsky Effective relative permeabilities and capillary pressure for one-dimensional heterogeneous media, Transport in Porous Media, Volume 26 (1997), pp. 229-260

Cité par Sources :

Commentaires - Politique