[Impact d'une goutte sur une surface liquide profonde : étude de la dynamique d'enfoncement du cratère]
When there is a drop impact on a liquid surface, two phenomena can appear depending on the impact Weber number: either vortex generation or jet formation; in this paper the second behavior is dealt with. Based on the comparison of experimental and theoretical results, the dynamic of splashing drops on deep liquid surfaces is analyzed; this work focuses on the crater's evolution and its maximum. The liquids used are water and ethyl-alcohol. Drop impacts are made with various impact velocities by creating drops from several heights above the liquid surface. A straightforward model to describe and predict the crater's sinking evolution is proposed and agrees well with the experimental results over a range of Weber numbers from 50 to 1500.
Suite à l'un impact d'une goutte sur une surface liquide, deux phénomènes peuvent se produire en fonction du nombre de Weber à l'impact : soit la génération de vortex ou la formation d'un jet. En se basant sur des résultats expérimentaux et un modèle théorique de la dynamique de l'impact d'une goutte sur une surface liquide profonde, l'étude se focalise plus précisement sur l'évolution du cratère et son maximum. Les liquides utilisés sont de l'eau et de l'éthanol. Un modèle pour décrire et prédire l'évolution de l'enfoncement du cratère est proposé et est en bon accord avec les résultats expérimentaux pour une plage de nombre de Weber de 50 à 1500.
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides, Impact de goutte, Surface liquide profonde, Cratère, Modèlisation
David Brutin 1
@article{CRMECA_2003__331_1_61_0, author = {David Brutin}, title = {Drop impingement on a deep liquid surface: study of a crater's sinking dynamics}, journal = {Comptes Rendus. M\'ecanique}, pages = {61--67}, publisher = {Elsevier}, volume = {331}, number = {1}, year = {2003}, doi = {10.1016/S1631-0721(02)00014-1}, language = {en}, }
David Brutin. Drop impingement on a deep liquid surface: study of a crater's sinking dynamics. Comptes Rendus. Mécanique, Volume 331 (2003) no. 1, pp. 61-67. doi : 10.1016/S1631-0721(02)00014-1. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)00014-1/
[1] A Study of Splashes, Longmans, Green, London, 1908
[2] The critical weber number for vortex and jet formation for drops impinging on a liquid pool, Phys. Fluids, Volume 31 (1988), pp. 3560-3562
[3] J. Colloid Interface Sci., 106 (1985) no. 347
[4] J. Colloid Interface Sci., 121 (1988) no. 121
[5] J. Fluid Mech., 29 (1967) no. 177
[6] Proc. Roy. Soc. London, 39 (1885) no. 417
[7] Splashing of drops on liquid layers, J. Appl. Phys., Volume 47 (1976), pp. 3963-3970
[8] Phenomena of a liquid drop falling to a liquid surface, Experiment. Fluids, Volume 7 (1989), pp. 388-394
[9] Splashing water drop, Science, Volume 155 (1967), pp. 1112-1114
[10] The splash of a liquid drop, J. Appl. Phys., Volume 38 (1967), pp. 3855-3866
[11] Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation, J. Fluid Mech., Volume 385 (1999), pp. 229-254
[12] Formation de digitations lors de l'impact d'une goutte sur un film liquide, C. R. Acad. Sci. Paris Sér. IIb, Volume 326 (1998), pp. 839-844
[13] The impact of drops on liquid surfaces and the underwater noise of rain, Annual Rev. Fluid Mech., Volume 25 (1993), pp. 557-602
- Submerging and Floating-up Vortices in the Picture of Smooth Inflow of a Free-Falling Ethanol Drop into Water, Fluid Dynamics, Volume 59 (2024) no. 6, p. 1789 | DOI:10.1134/s0015462824603772
- Transfer of Drop Material during the Formation of a Primary Cavity, Doklady Physics, Volume 68 (2023) no. 1, p. 14 | DOI:10.1134/s1028335822120023
- Fine Flow Structure at the Miscible Fluids Contact Domain Boundary in the Impact Mode of Free-Falling Drop Coalescence, Fluids, Volume 8 (2023) no. 10, p. 269 | DOI:10.3390/fluids8100269
- TRANSFER OF A DROP MATERIAL DURING THE PRIMARY CAVERN FORMATION, Доклады Российской академии наук. Физика, технические науки, Volume 508 (2023) no. 1, p. 42 | DOI:10.31857/s2686740022060062
- Crater Depth after the Impact of Multiple Drops into Deep Pools, Fluids, Volume 7 (2022) no. 2, p. 50 | DOI:10.3390/fluids7020050
- Criteria for antibubble formation from drop pairs impinging on a free surface, Physical Review Fluids, Volume 5 (2020) no. 12 | DOI:10.1103/physrevfluids.5.123601
- Drop Impacts with Liquid Pools and Layers, Collision Phenomena in Liquids and Solids (2017), p. 255 | DOI:10.1017/9781316556580.007
- A coupled Euler-Lagrange CFD modelling of droplets-to-film, The Aeronautical Journal, Volume 121 (2017) no. 1246, p. 1897 | DOI:10.1017/aer.2017.107
- Modeling of high-velocity impact ejecta by experiments with a water drop impacting on a water surface, Acta Mechanica, Volume 227 (2016) no. 10, p. 2911 | DOI:10.1007/s00707-016-1661-y
- Numerical study of single droplet impact onto liquid metal film under a uniform magnetic field, Physics of Fluids, Volume 26 (2014) no. 12 | DOI:10.1063/1.4903821
- The interaction between electron beam and amorphous chalcogenide films, Journal of Non-Crystalline Solids, Volume 358 (2012) no. 15, p. 1876 | DOI:10.1016/j.jnoncrysol.2012.05.042
- Normal droplet impact on horizontal moving films: an investigation of impact behaviour and regimes, Experiments in Fluids, Volume 50 (2011) no. 5, p. 1305 | DOI:10.1007/s00348-010-0991-0
- High-speed visualization of interface phenomena: single and double drop impacts onto a deep liquid layer, Journal of Visualization, Volume 14 (2011) no. 2, p. 103 | DOI:10.1007/s12650-011-0072-3
- Crater evolution after the impact of a drop onto a semi-infinite liquid target, Physical Review E, Volume 82 (2010) no. 3 | DOI:10.1103/physreve.82.036319
- A compressible flow model with capillary effects, Journal of Computational Physics, Volume 209 (2005) no. 1, pp. 139-178 | DOI:10.1016/j.jcp.2005.03.018 | Zbl:1329.76301
Cité par 15 documents. Sources : Crossref, zbMATH
Commentaires - Politique