[Sur la nature des instabilités de couche limite dans un écoulement entre un disque fixe et un disque tournant]
La transition d'un écoulement inter-disques de type rotor–stator est étudiée au moyen de la simulation numérique directe et de l'analyse linéaire de stabilité, en utilisant des approximations spectrales. Ce papier est consacré à l'analyse des structures annulaires et spirales obtenues par une méthode numérique tridimensionnelle dans la couche limite de Bödewadt. Les paramètres caractéristiques de ces structures sont comparés aux résultats théoriques et interprétés en termes d'instabilités de type I et II. De plus, les régions absolument instables sont identifiées théoriquement et les nombres de Reynolds critiques à la transition convectif/absolu sont déterminés dans les deux couches de Bödewadt et d'Ekman.
Both theoretical linear stability analysis and direct numerical simulation are performed to study the transition flow between a stationary and a rotating disc. This paper concerns three-dimensional spiral and annular patterns computed with a high-order (spectral) numerical method and related to Bödewadt layer instabilities. The characteristic parameters of these boundary layer patterns are compared to the theoretical results and interpreted in terms of type I and type II generic instabilities. Moreover, the absolute instability regions are also theoretically identified and the critical Reynolds numbers of the convective/absolute transition in both layers are given.
Accepté le :
Publié le :
Mots-clés : mécanique des fluides, instabilité et transition dans un écoulement en rotation, instabilité convective et absolue, simulation numérique directe, analyse linéaire de stabilité
Ewa Tuliska-Sznitko 1 ; Eric Serre 2 ; Patrick Bontoux 2
@article{CRMECA_2002__330_2_91_0, author = {Ewa Tuliska-Sznitko and Eric Serre and Patrick Bontoux}, title = {On the nature of the boundary layers instabilities in a flow between a rotating and a stationary disc}, journal = {Comptes Rendus. M\'ecanique}, pages = {91--99}, publisher = {Elsevier}, volume = {330}, number = {2}, year = {2002}, doi = {10.1016/S1631-0721(02)01432-8}, language = {en}, }
TY - JOUR AU - Ewa Tuliska-Sznitko AU - Eric Serre AU - Patrick Bontoux TI - On the nature of the boundary layers instabilities in a flow between a rotating and a stationary disc JO - Comptes Rendus. Mécanique PY - 2002 SP - 91 EP - 99 VL - 330 IS - 2 PB - Elsevier DO - 10.1016/S1631-0721(02)01432-8 LA - en ID - CRMECA_2002__330_2_91_0 ER -
%0 Journal Article %A Ewa Tuliska-Sznitko %A Eric Serre %A Patrick Bontoux %T On the nature of the boundary layers instabilities in a flow between a rotating and a stationary disc %J Comptes Rendus. Mécanique %D 2002 %P 91-99 %V 330 %N 2 %I Elsevier %R 10.1016/S1631-0721(02)01432-8 %G en %F CRMECA_2002__330_2_91_0
Ewa Tuliska-Sznitko; Eric Serre; Patrick Bontoux. On the nature of the boundary layers instabilities in a flow between a rotating and a stationary disc. Comptes Rendus. Mécanique, Volume 330 (2002) no. 2, pp. 91-99. doi : 10.1016/S1631-0721(02)01432-8. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01432-8/
[1] Spiral vortices in boundary layer transition region on a rotating disk, Acta Mech., Volume 35 (1980), pp. 71-82
[2] Absolute instability of the boundary layer on a rotating disk, J. Fluid. Mech., Volume 299 (1995), pp. 17-33
[3] Experimental study of absolute instability of the rotating-disk boundary layer flow, J. Fluid. Mech., Volume 314 (1996), pp. 373-405
[4] O. Daube, P. Le Quéré, R. Cousin, R. Jacques, Influence of curvature on transition to unsteadiness and chaos of rotor–stator disk flows, J. Fluid Mech. (2001) (soumis)
[5] On the instability of the flow between coaxial rotating disks, Boundary Layer Stability and Transition to Turbulence, ASME FED, 114, 1991, pp. 83-89
[6] Instability of non-isothermal flow between coaxial rotating disks, Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, 2000
[7] Annular and spiral patters in flow between rotating and stationary disks, J. Fluid. Mech., Volume 434 (2001), pp. 65-100
[8] On the instability of Ekman boundary flow, J. Atmospheric Sci., Volume 23 (1966), pp. 481-490
[9] Absolute instability of the Ekman layer and related rotating flows, J. Fluid. Mech., Volume 331 (1997), pp. 405-428
[10] Axisymmetric propagating vortices in the flow between a stationary and a rotating disk enclosed by a cylinder, J. Fluid Mech., Volume 386 (1999), pp. 105-127
[11] A 3D pseudo spectral method for convection in a rotating cylinder, Computers and Fluids, Volume 30 (2001) no. 4, pp. 491-519
[12] Electron-Stream Interaction with Plasmas, MIT Press, 1964
[13] The cusp map in the complex – frequency plane for absolute instabilities, Phys. Fluids, Volume 30 (1987)
[14] Local and global instability in spatially developing flows, Annual Rev. Mech., Volume 22 (1990), pp. 473-537
[15] Stability of Bödewadt flow, J. Fluid Mech., Volume 183 (1987), pp. 77-79
[16] Spiral and circular waves in the flow between a rotating and a stationary disc, Experiments in Fluids, Volume 26 (1999), pp. 179-187
[17] Axisymmetric instabilities of Bödewadt flow, Phys. Fluids, Volume 12 (2000) no. 7, pp. 1730-1739
Cité par Sources :
Commentaires - Politique