[Non unicité de solutions des équations différentielles pour un problème de couches limites en milieux poreux]
La modélisation d'un phénomène de convection naturelle dans un milieu poreux, occupant un domaine non borné, nous conduit à l'équation différentielle
The free convection, along a vertical flat plate embedded in a porous medium, can be described in terms of solutions to
Accepté le :
Publié le :
Mots-clés : milieu poreux, couche limite, existence et non unicité
Mohammed Guedda 1
@article{CRMECA_2002__330_4_279_0, author = {Mohammed Guedda}, title = {Nonuniqueness of solutions to differential equations for boundary-layer approximations in porous media}, journal = {Comptes Rendus. M\'ecanique}, pages = {279--283}, publisher = {Elsevier}, volume = {330}, number = {4}, year = {2002}, doi = {10.1016/S1631-0721(02)01458-4}, language = {en}, }
TY - JOUR AU - Mohammed Guedda TI - Nonuniqueness of solutions to differential equations for boundary-layer approximations in porous media JO - Comptes Rendus. Mécanique PY - 2002 SP - 279 EP - 283 VL - 330 IS - 4 PB - Elsevier DO - 10.1016/S1631-0721(02)01458-4 LA - en ID - CRMECA_2002__330_4_279_0 ER -
Mohammed Guedda. Nonuniqueness of solutions to differential equations for boundary-layer approximations in porous media. Comptes Rendus. Mécanique, Volume 330 (2002) no. 4, pp. 279-283. doi : 10.1016/S1631-0721(02)01458-4. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01458-4/
[1] Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res., Volume 82 (1977) no. 14, pp. 2040-2044
[2] Flow past a suddenly heated vertical plate in a porous medium, J. Proc. Roy. Soc. London Ser. A, Volume 403 (1986), pp. 51-80
[3] On a family of differential equation for boundary laer approximations in porous media, European J. Appl. Math., Volume 12 (2001), pp. 513-528
[4] Similarity solutions in free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media. I. Prescribed surface temperature, European J. Mech. B Fluids, Volume 14 (1995) no. 2, pp. 217-237
[5] Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, European J. Mech. B Fluids, Volume 19 (2000) no. 1, pp. 109-122
[6] Eigensolutions in boundary-lary flow adjacent to a stretching wall, IMA J. Appl. Math., Volume 36 (1986), pp. 375-392
[7] Similarity solutions of the boundary layer equations for a stretching wall, J. Méc. Théorie Appl., Volume 2 (1983), pp. 375-392
[8] Solutions similaires pour un problème de couches limites en milieux poreux, C. R. Acad. Paris, Série IIb, Volume 328 (2000), pp. 407-410
[9] B. Brighi, Private communication
[10] On a differential equation of boundary layer theory, Philos. Trans. Roy. Soc. London Ser. A, Volume 253 (1960), pp. 101-136
[11] M. Guedda, Similarity solutions to a boundary-layer problem in porous media (in preparation)
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier