[Non unicité de solutions des équations différentielles pour un problème de couches limites en milieux poreux]
La modélisation d'un phénomène de convection naturelle dans un milieu poreux, occupant un domaine non borné, nous conduit à l'équation différentielle , dans (0,+∞). Nous montrons que, pour cette équation avec les conditions initiales ou 1, admet une infinité de solutions globales, dont les dérivées d'ordre un et deux convergent vers 0 à l'infini.
The free convection, along a vertical flat plate embedded in a porous medium, can be described in terms of solutions to for all t∈(0,+∞). The purpose of this Note is to study the nonuniqueness of solutions to this problem, with the initial conditions, and f′(0)∈{0,1}, where No assumption at infinity is imposed. We show that this problem has an infinite number of unbounded global solutions. Moreover, we prove that the first and the second derivative of solutions tend to 0 as t approaches infinity.
Accepté le :
Publié le :
Mots-clés : milieu poreux, couche limite, existence et non unicité
Mohammed Guedda 1
@article{CRMECA_2002__330_4_279_0, author = {Mohammed Guedda}, title = {Nonuniqueness of solutions to differential equations for boundary-layer approximations in porous media}, journal = {Comptes Rendus. M\'ecanique}, pages = {279--283}, publisher = {Elsevier}, volume = {330}, number = {4}, year = {2002}, doi = {10.1016/S1631-0721(02)01458-4}, language = {en}, }
TY - JOUR AU - Mohammed Guedda TI - Nonuniqueness of solutions to differential equations for boundary-layer approximations in porous media JO - Comptes Rendus. Mécanique PY - 2002 SP - 279 EP - 283 VL - 330 IS - 4 PB - Elsevier DO - 10.1016/S1631-0721(02)01458-4 LA - en ID - CRMECA_2002__330_4_279_0 ER -
Mohammed Guedda. Nonuniqueness of solutions to differential equations for boundary-layer approximations in porous media. Comptes Rendus. Mécanique, Volume 330 (2002) no. 4, pp. 279-283. doi : 10.1016/S1631-0721(02)01458-4. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01458-4/
[1] Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res., Volume 82 (1977) no. 14, pp. 2040-2044
[2] Flow past a suddenly heated vertical plate in a porous medium, J. Proc. Roy. Soc. London Ser. A, Volume 403 (1986), pp. 51-80
[3] On a family of differential equation for boundary laer approximations in porous media, European J. Appl. Math., Volume 12 (2001), pp. 513-528
[4] Similarity solutions in free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media. I. Prescribed surface temperature, European J. Mech. B Fluids, Volume 14 (1995) no. 2, pp. 217-237
[5] Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, European J. Mech. B Fluids, Volume 19 (2000) no. 1, pp. 109-122
[6] Eigensolutions in boundary-lary flow adjacent to a stretching wall, IMA J. Appl. Math., Volume 36 (1986), pp. 375-392
[7] Similarity solutions of the boundary layer equations for a stretching wall, J. Méc. Théorie Appl., Volume 2 (1983), pp. 375-392
[8] Solutions similaires pour un problème de couches limites en milieux poreux, C. R. Acad. Paris, Série IIb, Volume 328 (2000), pp. 407-410
[9] B. Brighi, Private communication
[10] On a differential equation of boundary layer theory, Philos. Trans. Roy. Soc. London Ser. A, Volume 253 (1960), pp. 101-136
[11] M. Guedda, Similarity solutions to a boundary-layer problem in porous media (in preparation)
Cité par Sources :
Commentaires - Politique