[Écoulement derrière un corps à symétrie axiale plongé dans un milieu poreux saturé]
Nous étudions le problème d'écoulement derrière un corps axisymétrique plongé dans un milieu poreux saturé en utilisant l'extension de Brinkman. Nous donnons une formule générale pour la force de traînée exercée sur ce corps, sous forme de limite d'une expression contenant la fonction de courant caractéristique de l'écoulement. L'écoulement derrière une sphère axisymétrique approchée est également considéré. Dans ce cas précis, la fonction de courant s'exprime à l'aide des fonctions de Bessel et de Gegenbauer. Cette formule permet d'évaluer la traînée exercée sur le corps. Nous étudions également la variation de cette force en fonction des paramètres géométriques et de la perméabilité. La présente analyse permet d'obtenir les résultats concrets dans les cas d'une sphère et d'un corps sphéroidal.
The problem of viscous fluid past an axisymmetric body embedded in a fluid saturated porous medium is studied using the Brinkman's extension. A general formula for the drag on the body is derived in the form of a limit of an expression involving the stream function characterizing the flow. The flow past an axisymmetric approximate sphere is also considered. The stream function in this case is obtained in terms of Bessel functions and Gegenbauer's functions. The drag acting on the body is evaluated by using the formula derived. Its variation is studied with respect to geometric and permeability parameters. The special cases of flow past a sphere and a spheroid are obtained from the present analysis.
Accepté le :
Publié le :
Mots-clés : mécanique des fluides, corps à symétrie axiale, milieux porex, force de traînée, sphère approchée
D. Srinivasa Charya 1 ; J.V. Ramana Murthy 1
@article{CRMECA_2002__330_6_417_0, author = {D. Srinivasa Charya and J.V. Ramana Murthy}, title = {Flow past an axisymmetric body embedded in a saturated porous medium}, journal = {Comptes Rendus. M\'ecanique}, pages = {417--423}, publisher = {Elsevier}, volume = {330}, number = {6}, year = {2002}, doi = {10.1016/S1631-0721(02)01478-X}, language = {en}, }
D. Srinivasa Charya; J.V. Ramana Murthy. Flow past an axisymmetric body embedded in a saturated porous medium. Comptes Rendus. Mécanique, Volume 330 (2002) no. 6, pp. 417-423. doi : 10.1016/S1631-0721(02)01478-X. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01478-X/
[1] A calculation of viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res. A, Volume 1 (1947), pp. 27-34
[2] The drag on a cloud of spherical particles in low Reynolds number flow, J. Fluid. Mech., Volume 38 (1969), pp. 537-546
[3] Slow flow through stationary random beds and suspensions of spheres, J. Fluid. Mech., Volume 51 (1972), pp. 273-299
[4] The Stokes flow problems for a class of axially symmetric bodies, J. Fluid. Mech., Volume 7 (1960), pp. 529-549
[5] A solution for the problem of Stokes flow past a porous sphere, ZAMP, Volume 44 (1993), pp. 178-184
[6] Flow of a Newtonian fluid past an impervious sphere embedded in a porous medium, Indian J. Pure Appl. Math., Volume 27 (1996), pp. 1249-1256
[7] Creeping flow past a solid sphere in a porous medium, ZAMM, Volume 77 (1997), pp. 871-875
[8] Stokes flow of an incompressible micropolar fluid past an approximate sphere, Int. J. Engrg. Sci., Volume 31 (1993), pp. 153-161
[9] Slow steady rotation of an approximate sphere in an incompressible micropolar fluid, Int. J. Engrg. Sci., Volume 33 (1995), pp. 867-877
[10] Low Reynolds Number Hydrodynamics, Prentice-Hall, 1965
- Exact solution for laminar viscous fluid flow over a contaminated liquid drop placed in a porous region: Magnetohydrodynamics, Physics of Fluids, Volume 37 (2025) no. 1 | DOI:10.1063/5.0251114
- Hydromagnetic effects on couple stress fluid flow through a porous sphere embedded in another porous medium, Physics of Fluids, Volume 37 (2025) no. 4 | DOI:10.1063/5.0259290
- Stokes flow over a contaminated fluid sphere embedded in a porous medium with slip condition, Archives of Mechanics, Volume 76 (2024) no. 3, pp. 253-275 | DOI:10.24423/aom.4392 | Zbl:1553.76084
- Hydrophobic effects on a solid sphere translating in a Brinkman couple stress fluid covered by a concentric spherical cavity, Physics of Fluids, Volume 36 (2024) no. 3 | DOI:10.1063/5.0198852
- CREEPING FLOW ABOUT A TAINTED LIQUID DROP WITH A MICROPOLAR FLUID AND ALIGNED IN A POROUS MEDIUM FILLED WITH VISCOUS FLUID UTILIZING SLIP, Special Topics Reviews in Porous Media: An International Journal, Volume 15 (2024) no. 6, p. 61 | DOI:10.1615/specialtopicsrevporousmedia.2024047488
- Couple stress fluid flow enclosing a solid sphere in a porous medium: Effect of magnetic field, Physics of Fluids, Volume 35 (2023) no. 7 | DOI:10.1063/5.0155532
- Impact of magnetic field on the flow of a conducting fluid past an impervious spheroid embedded in porous medium, International Journal of Applied and Computational Mathematics, Volume 8 (2022) no. 3, p. 14 (Id/No 131) | DOI:10.1007/s40819-022-01321-5 | Zbl:1498.76108
- DRAG ON A POROUS SPHERE EMBEDDED IN COUPLE STRESS FLUID, Journal of Porous Media, Volume 25 (2022) no. 8, p. 105 | DOI:10.1615/jpormedia.2022040109
- Influence of MHD on micropolar fluid flow past a sphere implanted in porous media, Indian Journal of Physics, Volume 95 (2021) no. 6, p. 1175 | DOI:10.1007/s12648-020-01759-7
- Slow motion past a spheroid implanted in a Brinkman medium: slip condition, International Journal of Applied and Computational Mathematics, Volume 7 (2021) no. 4, p. 15 (Id/No 162) | DOI:10.1007/s40819-021-01104-4 | Zbl:1484.76075
- Flow around a Liquid Sphere Filled with a Non-Newtonian Liquid and Placed into a Porous Medium, Colloid Journal, Volume 82 (2020) no. 2, p. 152 | DOI:10.1134/s1061933x20010123
- A non-Newtonian liquid sphere embedded in a polar fluid saturated porous medium: Stokes flow, Applied Mathematics and Computation, Volume 316 (2018), pp. 488-503 | DOI:10.1016/j.amc.2017.08.009 | Zbl:1426.76033
- Brinkman – Forchheimer – Darcy Flow Past an Impermeable Sphere Embedded in a Porous Medium, Analele Universitatii "Ovidius" Constanta - Seria Matematica, Volume 23 (2015) no. 3, p. 97 | DOI:10.1515/auom-2015-0050
- Brinkman Flow of a Viscous Fluid Past a Reiner–Rivlin Liquid Sphere Immersed in a Saturated Porous Medium, Transport in Porous Media, Volume 107 (2015) no. 3, p. 907 | DOI:10.1007/s11242-015-0472-2
- A Numerical Study of the Flow Past an Impermeable Sphere Embedded in a Porous Medium, Transport in Porous Media, Volume 108 (2015) no. 3, p. 555 | DOI:10.1007/s11242-015-0488-7
- DARCY-BRINKMAN FLOW WITH SOLID INCLUSIONS, Chemical Engineering Communications, Volume 197 (2009) no. 3, p. 261 | DOI:10.1080/00986440903088603
Cité par 16 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier