La méthode de réduction proposée nécessite aucun calcul préalable de l'état de la structure. Le résidu, défini sur tout l'intervalle de temps, des équations obtenues par la méthode des éléments finis et le développement de Karhunen–Loève permettent de définir un faible nombre de fonctions de base pour la représentation spatiale des champs recherchés. Un algorithme non-incrémental, issu de la méthode LATIN, permet de déterminer ces fonctions de base. Le caractère non-incrémental de l'approche garantit la validité du modèle de taille réduite sur un intervalle de temps recouvrant de fortes évolutions de l'état de la structure.
A model reduction method is proposed for finite element models. A previous computation of the state of the structure is not necessary. Residuals defined over the entire time interval and the Karhunen–Loève method provide basis functions. A non-incremental algorithm, from the LATIN method, is used to compute this basis functions. Because of the non-incremental feature, the reduced order model is representative for a large evolution of the state of the structure.
Révisé le :
Publié le :
Keywords: solids and structures, model reduction, Karhunen–Loève expansion, Krylov subspace, non-incremental approach, contact
David Ryckelynck 1
@article{CRMECA_2002__330_7_499_0, author = {David Ryckelynck}, title = {R\'eduction a priori de mod\`eles thermom\'ecaniques}, journal = {Comptes Rendus. M\'ecanique}, pages = {499--505}, publisher = {Elsevier}, volume = {330}, number = {7}, year = {2002}, doi = {10.1016/S1631-0721(02)01487-0}, language = {fr}, }
David Ryckelynck. Réduction a priori de modèles thermomécaniques. Comptes Rendus. Mécanique, Volume 330 (2002) no. 7, pp. 499-505. doi : 10.1016/S1631-0721(02)01487-0. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01487-0/
[1] Empirical eigenfunctions and low dimensional systems, New Perspectives in Turbuence, Volume 5 (1991), p. 139
[2] The Karhunen–Loève Galerkin method for the inverse natural convection problems, Int. J. Heat Mass Transfer, Volume 44 (2001), pp. 155-167
[3] Newton–Krylov methods applied to a system of convection–diffusion–reaction equations, Comput. Phys. Comm., Volume 88 (1995), pp. 141-160
[4] A theorical overview of Krylov subspace methods, Appl. Numer. Math., Volume 19 (1995), pp. 207-233
[5] Newton-preconditioned Krylov subspace solvers for system of nonlinear equations: A numerical experiment, Appl. Math. Lett., Volume 14 (2001), pp. 195-200
[6] Sur une famille d'algorithmes en mécanique des structures, C. R. Acad. Sci. Paris, Série II, Volume 300 (1985) no. 2, pp. 41-44
[7] Mécanique non linéaire des stuctures, études en mécanique des matériaux et des structures, Hermès, 1996 (p. 265)
[8] The large time increment method for numerical simulation of metal forming processes, Proc. NUMETA, Elsevier, 1990, pp. 102-109
[9] An efficient adaptive strategy to master the global quality of viscoplastic analysis, Comput. & Structures, Volume 78 (2000) no. 1–3, pp. 169-184
[10] Numerical experimentations of parallel strategies in structural non-linear analysis, Calc. Parallèles, Volume 8 (1996) no. 2, pp. 245-249
- Toward Optimality of Proper Generalised Decomposition Bases, Mathematical and Computational Applications, Volume 24 (2019) no. 1, p. 30 | DOI:10.3390/mca24010030
- The reference point method, a “hyperreduction” technique: application to PGD-based nonlinear model reduction, Computer Methods in Applied Mechanics and Engineering, Volume 322 (2017), pp. 483-514 | DOI:10.1016/j.cma.2017.04.033 | Zbl:1439.65219
- Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context, International Journal for Numerical Methods in Engineering, Volume 103 (2015) no. 4, pp. 275-292 | DOI:10.1002/nme.4893 | Zbl:1352.74075
- Improving the
-compressibility of hyper reduced order models with moving sources: applications to welding and phase change problems, Computer Methods in Applied Mechanics and Engineering, Volume 274 (2014), pp. 237-263 | DOI:10.1016/j.cma.2014.02.011 | Zbl:1296.80009 - A priori space-time separated representation for the reduced order modeling of low Reynolds number flows, Computer Methods in Applied Mechanics and Engineering, Volume 274 (2014), pp. 264-288 | DOI:10.1016/j.cma.2014.02.010 | Zbl:1296.76033
- Multidimensional a priori hyper-reduction of mechanical models involving internal variables, Computer Methods in Applied Mechanics and Engineering, Volume 225-228 (2012), pp. 28-43 | DOI:10.1016/j.cma.2012.03.005 | Zbl:1253.74132
- A priori reduction method for solving the two-dimensional Burgers' equations, Applied Mathematics and Computation, Volume 217 (2011) no. 15, pp. 6671-6679 | DOI:10.1016/j.amc.2011.01.065 | Zbl:1211.65130
- A robust adaptive model reduction method for damage simulations, Computational Materials Science, Volume 50 (2011) no. 5, p. 1597 | DOI:10.1016/j.commatsci.2010.11.034
- Reduced-order modelling for solving linear and non-linear equations, International Journal for Numerical Methods in Biomedical Engineering, Volume 27 (2011) no. 1, pp. 43-58 | DOI:10.1002/cnm.1286 | Zbl:1210.65159
- Proper general decomposition (PGD) for the resolution of Navier-Stokes equations, Journal of Computational Physics, Volume 230 (2011) no. 4, pp. 1387-1407 | DOI:10.1016/j.jcp.2010.11.010 | Zbl:1391.76099
- Multi-level a priori hyper-reduction of mechanical models involving internal variables, Computer Methods in Applied Mechanics and Engineering, Volume 199 (2010) no. 17-20, pp. 1134-1142 | DOI:10.1016/j.cma.2009.12.003 | Zbl:1227.74093
- Proper Generalized Decomposition method for incompressible flows in stream-vorticity formulation, European Journal of Computational Mechanics, Volume 19 (2010) no. 5-7, p. 591 | DOI:10.3166/ejcm.19.591-617
- Hierarchical Approach to Flow Calculations for Polymeric Liquid Crystals, Multiscale Modelling of Polymer Properties, Volume 22 (2006), p. 359 | DOI:10.1016/s1570-7946(06)80017-9
- An efficient `a priori' model reduction for boundary element models, Engineering Analysis with Boundary Elements, Volume 29 (2005) no. 8, pp. 796-801 | DOI:10.1016/j.enganabound.2005.04.003 | Zbl:1182.76913
- A priori hyperreduction method: an adaptive approach, Journal of Computational Physics, Volume 202 (2005) no. 1, pp. 346-366 | DOI:10.1016/j.jcp.2004.07.015 | Zbl:1288.65178
Cité par 15 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier