Comptes Rendus
Réduction a priori de modèles thermomécaniques
Comptes Rendus. Mécanique, Volume 330 (2002) no. 7, pp. 499-505.

La méthode de réduction proposée nécessite aucun calcul préalable de l'état de la structure. Le résidu, défini sur tout l'intervalle de temps, des équations obtenues par la méthode des éléments finis et le développement de Karhunen–Loève permettent de définir un faible nombre de fonctions de base pour la représentation spatiale des champs recherchés. Un algorithme non-incrémental, issu de la méthode LATIN, permet de déterminer ces fonctions de base. Le caractère non-incrémental de l'approche garantit la validité du modèle de taille réduite sur un intervalle de temps recouvrant de fortes évolutions de l'état de la structure.

A model reduction method is proposed for finite element models. A previous computation of the state of the structure is not necessary. Residuals defined over the entire time interval and the Karhunen–Loève method provide basis functions. A non-incremental algorithm, from the LATIN method, is used to compute this basis functions. Because of the non-incremental feature, the reduced order model is representative for a large evolution of the state of the structure.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-0721(02)01487-0
Mots-clés : solides et structures, réduction de modèle, sous-espace de Krylov, développement de Karhunen–Loève, approche non-incrémentale, contact
Keywords: solids and structures, model reduction, Karhunen–Loève expansion, Krylov subspace, non-incremental approach, contact

David Ryckelynck 1

1 Laboratoire de mécanique des systèmes et des procédés, UMR CNRS-ENSAM-ESEM, École nationale supérieure d'Arts et Métiers, 151, boulevard de l'hôpital, 75013 Paris, France
@article{CRMECA_2002__330_7_499_0,
     author = {David Ryckelynck},
     title = {R\'eduction a priori de mod\`eles thermom\'ecaniques},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {499--505},
     publisher = {Elsevier},
     volume = {330},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-0721(02)01487-0},
     language = {fr},
}
TY  - JOUR
AU  - David Ryckelynck
TI  - Réduction a priori de modèles thermomécaniques
JO  - Comptes Rendus. Mécanique
PY  - 2002
SP  - 499
EP  - 505
VL  - 330
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-0721(02)01487-0
LA  - fr
ID  - CRMECA_2002__330_7_499_0
ER  - 
%0 Journal Article
%A David Ryckelynck
%T Réduction a priori de modèles thermomécaniques
%J Comptes Rendus. Mécanique
%D 2002
%P 499-505
%V 330
%N 7
%I Elsevier
%R 10.1016/S1631-0721(02)01487-0
%G fr
%F CRMECA_2002__330_7_499_0
David Ryckelynck. Réduction a priori de modèles thermomécaniques. Comptes Rendus. Mécanique, Volume 330 (2002) no. 7, pp. 499-505. doi : 10.1016/S1631-0721(02)01487-0. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01487-0/

[1] L. Sirovich Empirical eigenfunctions and low dimensional systems, New Perspectives in Turbuence, Volume 5 (1991), p. 139

[2] H.-M. Park; W.-S. Jung The Karhunen–Loève Galerkin method for the inverse natural convection problems, Int. J. Heat Mass Transfer, Volume 44 (2001), pp. 155-167

[3] D.-A. Knoll; P.-R. McHugh Newton–Krylov methods applied to a system of convection–diffusion–reaction equations, Comput. Phys. Comm., Volume 88 (1995), pp. 141-160

[4] R. Weiss A theorical overview of Krylov subspace methods, Appl. Numer. Math., Volume 19 (1995), pp. 207-233

[5] S. Sundar; B.-K. Bhagavan; S. Prasad Newton-preconditioned Krylov subspace solvers for system of nonlinear equations: A numerical experiment, Appl. Math. Lett., Volume 14 (2001), pp. 195-200

[6] P. Ladevèze Sur une famille d'algorithmes en mécanique des structures, C. R. Acad. Sci. Paris, Série II, Volume 300 (1985) no. 2, pp. 41-44

[7] P. Ladevèze Mécanique non linéaire des stuctures, études en mécanique des matériaux et des structures, Hermès, 1996 (p. 265)

[8] P. Bussy; P. Rougée; P. Vauchez The large time increment method for numerical simulation of metal forming processes, Proc. NUMETA, Elsevier, 1990, pp. 102-109

[9] J.-P. Pelle; D. Ryckelynck An efficient adaptive strategy to master the global quality of viscoplastic analysis, Comput. & Structures, Volume 78 (2000) no. 1–3, pp. 169-184

[10] L. Champaney; J.-Y. Cognard; D. Dureisseix; P. Ladevèze Numerical experimentations of parallel strategies in structural non-linear analysis, Calc. Parallèles, Volume 8 (1996) no. 2, pp. 245-249

  • Shadi Alameddin; Amélie Fau; David Néron; Pierre Ladevèze; Udo Nackenhorst Toward Optimality of Proper Generalised Decomposition Bases, Mathematical and Computational Applications, Volume 24 (2019) no. 1, p. 30 | DOI:10.3390/mca24010030
  • M. Capaldo; P.-A. Guidault; D. Néron; P. Ladevèze The reference point method, a “hyperreduction” technique: application to PGD-based nonlinear model reduction, Computer Methods in Applied Mechanics and Engineering, Volume 322 (2017), pp. 483-514 | DOI:10.1016/j.cma.2017.04.033 | Zbl:1439.65219
  • David Néron; Pierre-Alain Boucard; Nicolas Relun Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context, International Journal for Numerical Methods in Engineering, Volume 103 (2015) no. 4, pp. 275-292 | DOI:10.1002/nme.4893 | Zbl:1352.74075
  • Alejandro Cosimo; Alberto Cardona; Sergio Idelsohn Improving the k-compressibility of hyper reduced order models with moving sources: applications to welding and phase change problems, Computer Methods in Applied Mechanics and Engineering, Volume 274 (2014), pp. 237-263 | DOI:10.1016/j.cma.2014.02.011 | Zbl:1296.80009
  • C. Leblond; C. Allery A priori space-time separated representation for the reduced order modeling of low Reynolds number flows, Computer Methods in Applied Mechanics and Engineering, Volume 274 (2014), pp. 264-288 | DOI:10.1016/j.cma.2014.02.010 | Zbl:1296.76033
  • David Ryckelynck; Florence Vincent; Sabine Cantournet Multidimensional a priori hyper-reduction of mechanical models involving internal variables, Computer Methods in Applied Mechanics and Engineering, Volume 225-228 (2012), pp. 28-43 | DOI:10.1016/j.cma.2012.03.005 | Zbl:1253.74132
  • C. Allery; A. Hamdouni; D. Ryckelynck; N. Verdon A priori reduction method for solving the two-dimensional Burgers' equations, Applied Mathematics and Computation, Volume 217 (2011) no. 15, pp. 6671-6679 | DOI:10.1016/j.amc.2011.01.065 | Zbl:1211.65130
  • D. Ryckelynck; D. Missoum Benziane; S. Cartel; J. Besson A robust adaptive model reduction method for damage simulations, Computational Materials Science, Volume 50 (2011) no. 5, p. 1597 | DOI:10.1016/j.commatsci.2010.11.034
  • N. Verdon; C. Allery; C. Béghein; A. Hamdouni; D. Ryckelynck Reduced-order modelling for solving linear and non-linear equations, International Journal for Numerical Methods in Biomedical Engineering, Volume 27 (2011) no. 1, pp. 43-58 | DOI:10.1002/cnm.1286 | Zbl:1210.65159
  • A. Dumon; C. Allery; A. Ammar Proper general decomposition (PGD) for the resolution of Navier-Stokes equations, Journal of Computational Physics, Volume 230 (2011) no. 4, pp. 1387-1407 | DOI:10.1016/j.jcp.2010.11.010 | Zbl:1391.76099
  • D. Ryckelynck; D. Missoum Benziane Multi-level a priori hyper-reduction of mechanical models involving internal variables, Computer Methods in Applied Mechanics and Engineering, Volume 199 (2010) no. 17-20, pp. 1134-1142 | DOI:10.1016/j.cma.2009.12.003 | Zbl:1227.74093
  • Antoine Dumon; Cyrille Allery; Amine Ammar Proper Generalized Decomposition method for incompressible flows in stream-vorticity formulation, European Journal of Computational Mechanics, Volume 19 (2010) no. 5-7, p. 591 | DOI:10.3166/ejcm.19.591-617
  • M. Laso; L.M. Muneta; M. Müller; V. Alcazar; F. Chinesta; A. Animar Hierarchical Approach to Flow Calculations for Polymeric Liquid Crystals, Multiscale Modelling of Polymer Properties, Volume 22 (2006), p. 359 | DOI:10.1016/s1570-7946(06)80017-9
  • D. Ryckelynck; L. Hermanns; F. Chinesta; E. Alarcón An efficient `a priori' model reduction for boundary element models, Engineering Analysis with Boundary Elements, Volume 29 (2005) no. 8, pp. 796-801 | DOI:10.1016/j.enganabound.2005.04.003 | Zbl:1182.76913
  • D. Ryckelynck A priori hyperreduction method: an adaptive approach, Journal of Computational Physics, Volume 202 (2005) no. 1, pp. 346-366 | DOI:10.1016/j.jcp.2004.07.015 | Zbl:1288.65178

Cité par 15 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: