Comptes Rendus
Vortex shedding modeling using diffusive van der Pol oscillators
[Modélisation du détachement tourbillonnaire avec des oscillateurs de van der Pol interagissant par diffusion]
Comptes Rendus. Mécanique, Volume 330 (2002) no. 7, pp. 451-456.

Nous analysons un modèle simple de la dynamique du sillage proche derrière une structure élancée. Le modèle est constitué par une distribution continue, le long de la structure, d'oscillateurs de van der Pol interagissant par diffusion. En écoulement cisaillé, la diffusion permet de décrire le détachement tourbillonnaire par cellules, dont la taille est ici calculée analytiquement en fonction des paramètres du modèle. Dans le cas d'une structure sinueuse en écoulement uniforme, le modèle reproduit qualitativement la suppression globale du détachement tourbillonnaire.

A simple model for the near wake dynamics of slender bluff bodies in cross-flow is analyzed. It is based on a continuous distribution of van der Pol oscillators arranged along the spanwise extent of the structure and interacting by diffusion. Diffusive interaction is shown to be able to model cellular vortex shedding in shear flow, the cell size being estimated analytically with respect to the model parameters. Moreover, diffusive interaction succeeds in describing qualitatively the global suppression of vortex shedding from a sinuous structure in uniform flow.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(02)01492-4
Keywords: fluid mechanics, vortex shedding, 3-D spanwise effects, dynamical systems, van der Pol oscillator
Mots-clés : mécanique des fluides, détachement tourbillonnaire, effets 3-D, systèmes dynamiques, oscillateur de van der Pol

Matteo Luca Facchinetti 1 ; Emmanuel de Langre 1 ; Francis Biolley 2

1 Laboratoire d'Hydrodynamique (LadHyX), CNRS, École polytechnique, 91128 Palaiseau cedex, France
2 Institut Français du Pétrole (IFP), 1 et 4, avenue de Bois Préau, 92852 Rueil-Malmaison cedex, France
@article{CRMECA_2002__330_7_451_0,
     author = {Matteo Luca Facchinetti and Emmanuel de~Langre and Francis Biolley},
     title = {Vortex shedding modeling using diffusive van der {Pol} oscillators},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {451--456},
     publisher = {Elsevier},
     volume = {330},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-0721(02)01492-4},
     language = {en},
}
TY  - JOUR
AU  - Matteo Luca Facchinetti
AU  - Emmanuel de Langre
AU  - Francis Biolley
TI  - Vortex shedding modeling using diffusive van der Pol oscillators
JO  - Comptes Rendus. Mécanique
PY  - 2002
SP  - 451
EP  - 456
VL  - 330
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-0721(02)01492-4
LA  - en
ID  - CRMECA_2002__330_7_451_0
ER  - 
%0 Journal Article
%A Matteo Luca Facchinetti
%A Emmanuel de Langre
%A Francis Biolley
%T Vortex shedding modeling using diffusive van der Pol oscillators
%J Comptes Rendus. Mécanique
%D 2002
%P 451-456
%V 330
%N 7
%I Elsevier
%R 10.1016/S1631-0721(02)01492-4
%G en
%F CRMECA_2002__330_7_451_0
Matteo Luca Facchinetti; Emmanuel de Langre; Francis Biolley. Vortex shedding modeling using diffusive van der Pol oscillators. Comptes Rendus. Mécanique, Volume 330 (2002) no. 7, pp. 451-456. doi : 10.1016/S1631-0721(02)01492-4. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01492-4/

[1] R.D. Blevins Flow-Induced Vibrations, Van Nostrand–Reinhold, 1990

[2] O.M. Griffin Vortex shedding from bluff bodies in a shear flow: a review, J. Fluids Engrg., Volume 107 (1985), pp. 298-306

[3] A. Papangelou Vortex shedding from slender cones at low Reynolds number, J. Fluid Mech., Volume 242 (1992), pp. 299-321

[4] P.S. Piccirillo; C.W. van Atta An experimental study of vortex shedding behind linearly tapered cylinders at low Reynolds number, J. Fluid Mech., Volume 246 (1993), pp. 163-195

[5] P.W. Bearman; J.C. Owen Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines, J. Fluids Structures, Volume 12 (1998), pp. 123-130

[6] D.J. Olinger A low-order model for vortex shedding patterns behind vibrating flexible cables, Phys. Fluids, Volume 10 (1998), pp. 1953-1961

[7] P.A. Monkewitz; C.H.K. Williamson; G.D. Miller Phase dynamics of Karman vortices in cylinder wakes, Phys. Fluids, Volume 8 (1996), pp. 91-96

[8] M. Gaster Vortex shedding from slender cones at low Reynolds numbers, J. Fluid Mech., Volume 38 (1969) no. 3, pp. 565-576

[9] B.R. Noack; F. Ohle; H. Eckelmann On cell formation in vortex streets, J. Fluid Mech., Volume 227 (1991), pp. 293-308

[10] S. Balasubramanian; R.A. Skop A nonlinear oscillator model for vortex shedding from cylinders and cones in uniform and shear flows, J. Fluids Structures, Volume 10 (1996), pp. 197-214

[11] Y. Pomeau; S. Zaleski; P. Manneville Dislocation motion in cellular structures, Phys. Rev. A, Volume 27 (1983), pp. 2710-2726

[12] E. Villermaux Memory-induced frequency oscillations in closed convection boxes, Phys. Rev. Lett., Volume 75 (1995) no. 25, pp. 4618-4621

  • Stefano Brusco; Anna Bagnara; Stefano Cammelli; Giuseppe Piccardo Experimental investigations on the vortex-shedding from a highly tapered circular cylinder in smooth flow, Journal of Fluids and Structures, Volume 122 (2023), p. 103983 | DOI:10.1016/j.jfluidstructs.2023.103983
  • Daniel Johnston; Matthew Cartmell A novel approximation method for the solution of weakly nonlinear coupled systems, Nonlinear Dynamics, Volume 111 (2023) no. 17, p. 16271 | DOI:10.1007/s11071-023-08723-0
  • Che Xu; Liya Zhao; Jae-Hung Han; Shima Shahab; Jinkyu Yang, Active and Passive Smart Structures and Integrated Systems XVI (2022), p. 3 | DOI:10.1117/12.2611733
  • Ming-Ming LIU; Hao-Cheng WANG; Fei-Fei SHAO; Xin JIN; Guo-Qiang Tang; Fan YANG Numerical investigation on vortex-induced vibration of an elastically mounted circular cylinder with multiple control rods at low Reynolds number, Applied Ocean Research, Volume 118 (2022), p. 102987 | DOI:10.1016/j.apor.2021.102987
  • Junzhi Pan; Zilong Ti; Yubing Song; Yongle Li An integrated approach of vortex-induced vibration for long-span bridge with inhomogeneous cross-sections, Journal of Wind Engineering and Industrial Aerodynamics, Volume 222 (2022), p. 104942 | DOI:10.1016/j.jweia.2022.104942
  • Viktor Hruška; Michal Bednařík Time domain phenomenological formulation for the sound generation in corrugated pipes, Archive of Applied Mechanics, Volume 91 (2021) no. 6, p. 2907 | DOI:10.1007/s00419-021-01942-0
  • Tasso J. Kaper; Theodore Vo A new class of chimeras in locally coupled oscillators with small-amplitude, high-frequency asynchrony and large-amplitude, low-frequency synchrony, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 31 (2021) no. 12 | DOI:10.1063/5.0067421
  • Xiantao Fan; Yang Wang; Wei Tan Aerodynamic wake oscillator for modeling flow-induced vibration of tandem cylinders with short spans, International Journal of Mechanical Sciences, Volume 204 (2021), p. 106548 | DOI:10.1016/j.ijmecsci.2021.106548
  • Dongyang Chen; Chaojie Gu; Ruihua Zhang; Jiaying Liu; Dian Guo; Pier Marzocca Vortex-Induced Vibrations of Two Degrees-of-Freedom Sprung Cylinder With a Rotational Nonlinear Energy Sink: A Numerical Investigation, Journal of Computational and Nonlinear Dynamics, Volume 16 (2021) no. 7 | DOI:10.1115/1.4051023
  • S. Bahramiasl; E. de Langre Loss of lock-in in VIV due to spanwise variations of diameters, Ocean Engineering, Volume 220 (2021), p. 108446 | DOI:10.1016/j.oceaneng.2020.108446
  • Yuancen Wang; Zhiqiang Wu; Guoqi Zhang; Yajie Li; Feng Wang Bifurcation phenomenon and multi-stable behavior in vortex-induced vibration of top tension riser in shear flow, Journal of Vibration and Control, Volume 26 (2020) no. 9-10, p. 659 | DOI:10.1177/1077546319889856
  • Masataka Iwai, 2019 19th International Conference on Control, Automation and Systems (ICCAS) (2019), p. 873 | DOI:10.23919/iccas47443.2019.8971716
  • Viktor Hruška; Michal Bednarřík; Milan Červenka; V. Goussev; J. Yin Weakly nonlinear oscillations of gas column driven by self-sustained sources, MATEC Web of Conferences, Volume 283 (2019), p. 06001 | DOI:10.1051/matecconf/201928306001
  • Yuancen Wang; Zhiqiang Wu; Xiangyun Zhang; Jian G. Zhou Research on Bifurcation Response for Vortex‐Induced Vibration of Top Tension Riser in Shear Flow, Mathematical Problems in Engineering, Volume 2019 (2019) no. 1 | DOI:10.1155/2019/1564194
  • Valentina Motta; Leonie Malzacher Open-loop and closed-loop flow control based on Van der Pol modeling, Acta Mechanica, Volume 229 (2018) no. 1, p. 389 | DOI:10.1007/s00707-017-1975-4
  • Flóra Hajdu Numerical examination of nonlinear oscillators, Pollack Periodica, Volume 13 (2018) no. 3, p. 95 | DOI:10.1556/606.2018.13.3.10
  • Zhuang Kang; Cheng Zhang; Rui Chang A higher-order nonlinear oscillator model for coupled cross-flow and in-line VIV of a circular cylinder, Ships and Offshore Structures, Volume 13 (2018) no. 5, p. 488 | DOI:10.1080/17445302.2018.1426431
  • Dan Wang; Yushu Chen; M. Wiercigroch; Qingjie Cao Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices, Applied Mathematics and Mechanics, Volume 37 (2016) no. 9, p. 1251 | DOI:10.1007/s10483-016-2128-6
  • Weiwei Zhang; Xintao Li; Zhengyin Ye; Yuewen Jiang Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers, Journal of Fluid Mechanics, Volume 783 (2015), p. 72 | DOI:10.1017/jfm.2015.548
  • Xu Bai; Wei Qin Using vortex strength wake oscillator in modelling of vortex induced vibrations in two degrees of freedom, European Journal of Mechanics - B/Fluids, Volume 48 (2014), p. 165 | DOI:10.1016/j.euromechflu.2014.05.002
  • B. Rajavel; M. G. Prasad Acoustics of Corrugated Pipes: A Review, Applied Mechanics Reviews, Volume 65 (2013) no. 5 | DOI:10.1115/1.4025302
  • Larry K. B. Li; Matthew P. Juniper Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet, Journal of Fluid Mechanics, Volume 726 (2013), p. 624 | DOI:10.1017/jfm.2013.223
  • R. Violette; E. de Langre; J. Szydlowski A linear stability approach to vortex-induced vibrations and waves, Journal of Fluids and Structures, Volume 26 (2010) no. 3, p. 442 | DOI:10.1016/j.jfluidstructs.2010.01.002
  • Miguel A. Barrón; Mihir Sen Synchronization of four coupled van der Pol oscillators, Nonlinear Dynamics, Volume 56 (2009) no. 4, p. 357 | DOI:10.1007/s11071-008-9402-y
  • R. Violette; E. de Langre; J. Szydlowski Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments, Computers Structures, Volume 85 (2007) no. 11-14, p. 1134 | DOI:10.1016/j.compstruc.2006.08.005
  • Michel Provansal Wake Instabilities Behind Bluff Bodies, Dynamics of Spatio-Temporal Cellular Structures, Volume 207 (2006), p. 179 | DOI:10.1007/978-0-387-25111-0_10
  • E. de Langre Frequency lock-in is caused by coupled-mode flutter, Journal of Fluids and Structures, Volume 22 (2006) no. 6-7, p. 783 | DOI:10.1016/j.jfluidstructs.2006.04.008
  • C.H.K. Williamson; R. Govardhan VORTEX-INDUCED VIBRATIONS, Annual Review of Fluid Mechanics, Volume 36 (2004) no. 1, p. 413 | DOI:10.1146/annurev.fluid.36.050802.122128
  • G. Balasubramanian; D. J. Olinger; M. A. Demetriou A self-learning coupled map lattice for vortex shedding in cable and cylinder wakes, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 14 (2004) no. 2, p. 293 | DOI:10.1063/1.1669091
  • Matteo Luca Facchinetti; Emmanuel de Langre; Francis Biolley Vortex-induced travelling waves along a cable, European Journal of Mechanics - B/Fluids, Volume 23 (2004) no. 1, p. 199 | DOI:10.1016/j.euromechflu.2003.04.004
  • Michel Provansal; Lionel Schouveiler; Thomas Leweke From the double vortex street behind a cylinder to the wake of a sphere, European Journal of Mechanics - B/Fluids, Volume 23 (2004) no. 1, p. 65 | DOI:10.1016/j.euromechflu.2003.09.007
  • M.L. Facchinetti; E. de Langre; F. Biolley Coupling of structure and wake oscillators in vortex-induced vibrations, Journal of Fluids and Structures, Volume 19 (2004) no. 2, p. 123 | DOI:10.1016/j.jfluidstructs.2003.12.004

Cité par 32 documents. Sources : Crossref

Commentaires - Politique