Comptes Rendus
‘Ruban à godets’: an elastic model for ripples in plant leaves
[Ruban à godets : un modèle élastique pour les fronces des feuillages]
Comptes Rendus. Mécanique, Volume 330 (2002) no. 12, pp. 831-836.

On étudie la formation des fronces au bord des feuillages grâce à un modèle de bande élastique à courbure spontanée. Les équations d'équilibre de la bande sont établies explicitement. Une méthode numérique de résolution est présentée puis mise en œuvre. À cause des non-linéarités géométriques, on trouve plusieurs configurations d'équilibre ; une seule peut prétendre décrire les feuillages. Ceci constitue la premiére étude des fronces de feuillages s'appuyant sur les équations de l'élasticité.

The formation of ripples along the edge of plant leaves is studied using a model of an elastic strip with spontaneous curvature. The equations of equilibrium of the strip are established in an explicit form. A numerical method of solution is presented and carried out. Owing to the presence of geometric nonlinearities, several equilibrium configurations are found but we show that only one of them is physical. To our knowledge, this is the first investigation of ripples in plant leaves that is based on the equations of elasticity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(02)01545-0
Keywords: solids and structures, elastic rods, growth in biology
Mots-clés : solides et structures, tiges élastiques, croissance en biologie

Basile Audoly 1 ; Arezki Boudaoud 2

1 Laboratoire de modélisation en mécanique, UMR 7607 du CNRS, Université Pierre et Marie Curie, 4, place Jussieu, 75252 Paris cedex 05, France
2 Laboratoire de physique statistique, UMR 8550 du CNRS, École normale supérieure, 24, rue Lhomond, 75231 Paris cedex 05, France
@article{CRMECA_2002__330_12_831_0,
     author = {Basile Audoly and Arezki Boudaoud},
     title = {{\textquoteleft}Ruban \`a godets{\textquoteright}: an elastic model for ripples in plant leaves},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {831--836},
     publisher = {Elsevier},
     volume = {330},
     number = {12},
     year = {2002},
     doi = {10.1016/S1631-0721(02)01545-0},
     language = {en},
}
TY  - JOUR
AU  - Basile Audoly
AU  - Arezki Boudaoud
TI  - ‘Ruban à godets’: an elastic model for ripples in plant leaves
JO  - Comptes Rendus. Mécanique
PY  - 2002
SP  - 831
EP  - 836
VL  - 330
IS  - 12
PB  - Elsevier
DO  - 10.1016/S1631-0721(02)01545-0
LA  - en
ID  - CRMECA_2002__330_12_831_0
ER  - 
%0 Journal Article
%A Basile Audoly
%A Arezki Boudaoud
%T ‘Ruban à godets’: an elastic model for ripples in plant leaves
%J Comptes Rendus. Mécanique
%D 2002
%P 831-836
%V 330
%N 12
%I Elsevier
%R 10.1016/S1631-0721(02)01545-0
%G en
%F CRMECA_2002__330_12_831_0
Basile Audoly; Arezki Boudaoud. ‘Ruban à godets’: an elastic model for ripples in plant leaves. Comptes Rendus. Mécanique, Volume 330 (2002) no. 12, pp. 831-836. doi : 10.1016/S1631-0721(02)01545-0. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01545-0/

[1] S. Nechaev; R. Voiturier On the plant leaf's boundary, ‘jupe à godets’ and conformal embeddings, J. Phys. A, Volume 34 (2001), pp. 11069-11082

[2] E. Sharon, B. Roman, M. Marder, G.-S. Shin, H.L. Swinney, Buckling cascade in thin sheets, Nature (2002), in press

[3] P.L. Tchebychef, On the cut of clothes, talk at l'Association française pour l'avancement des sciences, 7th session, Paris, Meeting of 28 August 1878

[4] M. Marder The shape of the edge of a leaf (2002) | arXiv

[5] G.R. Kirchhoff Über das Gleihgewicht und die Bewegung eines unendlich dünnen elastichen Stabes, J. Math. (Crelle), Volume 56 (1859)

[6] A. Mielke; P. Holmes Spatially complex equilibria for of buckled rods, Arch. Rational Mech. Anal, Volume 101 (1988), pp. 135-181

[7] G.H.M. van der Heiden; Champneys; J.M.T. Thompson The spatial complexity of localized buckling in rods with non circular cross section, SIAM J. Appl. Math, Volume 59 (1998), pp. 198-221

[8] G.H.M. van der Heiden; J.M.T. Thompson Lock-on to tape-like behaviour in the torsional buckling of anisotropic rod, Physica D, Volume 112 (1998), pp. 201-224

[9] A. Goriely; P. Shipman Dynamics of helical strips, Phys. Rev. E, Volume 61 (2000), pp. 4508-4517

[10] A. Goriely; M. Nizette; M. Tabor On the dynamics of elastic strips, J. Nonlinear Sci, Volume 11 (2001), pp. 3-45

[11] A.E.H. Love A Treatise on the Mathematical Theory of Elasticty, Dover, New York, 1944

[12] A. Audoly, B. Boudaoud, in preparation

  • Zachary Gao Sun; Vikrant Yadav; Sorosh Amiri; Wenxiang Cao; Enrique M. De La Cruz; Michael Murrell Cofilin-mediated actin filament network flexibility facilitates 2D to 3D actomyosin shape change, European Journal of Cell Biology, Volume 103 (2024) no. 1, p. 151379 | DOI:10.1016/j.ejcb.2023.151379
  • Sjaak Kok; Ali Amoozandeh Nobaveh; Giuseppe Radaelli Neutrally stable double-curved shells by inflection point propagation, Journal of the Mechanics and Physics of Solids, Volume 171 (2023), p. 105133 | DOI:10.1016/j.jmps.2022.105133
  • Thomas Portet; Zachary R. Cohen; Gunnar J. Goetz; Nicole Panek; Peter N. Holmes; Sean A. Stephens; Tamas Varga; Sarah L. Keller Ripples at edges of blooming lilies and torn plastic sheets, Biophysical Journal, Volume 121 (2022) no. 12, p. 2389 | DOI:10.1016/j.bpj.2022.05.018
  • Toby L. Shearman; Shankar C. Venkataramani Distributed Branch Points and the Shape of Elastic Surfaces with Constant Negative Curvature, Journal of Nonlinear Science, Volume 31 (2021) no. 1 | DOI:10.1007/s00332-020-09657-2
  • John Gemmer; Eran Sharon; Toby Shearman; Shankar C. Venkataramani Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets, EPL (Europhysics Letters), Volume 114 (2016) no. 2, p. 24003 | DOI:10.1209/0295-5075/114/24003
  • Peter Bella; Robert V. Kohn Metric-Induced Wrinkling of a Thin Elastic Sheet, Journal of Nonlinear Science, Volume 24 (2014) no. 6, p. 1147 | DOI:10.1007/s00332-014-9214-9
  • Jia Liu; Jiangshui Huang; Tianxiang Su; Katia Bertoldi; David R. Clarke; Markus J. Buehler Structural Transition from Helices to Hemihelices, PLoS ONE, Volume 9 (2014) no. 4, p. e93183 | DOI:10.1371/journal.pone.0093183
  • Philip Ball The maths of the pop-up tent, Nature (2012) | DOI:10.1038/nature.2012.12077
  • J A Gemmer; S C Venkataramani Defects and boundary layers in non-Euclidean plates, Nonlinearity, Volume 25 (2012) no. 12, p. 3553 | DOI:10.1088/0951-7715/25/12/3553
  • John A. Gemmer; Shankar C. Venkataramani Shape selection in non-Euclidean plates, Physica D: Nonlinear Phenomena, Volume 240 (2011) no. 19, p. 1536 | DOI:10.1016/j.physd.2011.07.002
  • M. A. Dias; J. A. Hanna; C. D. Santangelo Programmed buckling by controlled lateral swelling in a thin elastic sheet, Physical Review E, Volume 84 (2011) no. 3 | DOI:10.1103/physreve.84.036603
  • Hang Xiao; Xi Chen Modeling and simulation of curled dry leaves, Soft Matter, Volume 7 (2011) no. 22, p. 10794 | DOI:10.1039/c1sm05998j
  • Bryan Gin-ge Chen; Christian D. Santangelo Minimal resonances in annular non-Euclidean strips, Physical Review E, Volume 82 (2010) no. 5 | DOI:10.1103/physreve.82.056601
  • Y. Pomeau; D. Sciamarella An unfinished tale of nonlinear PDEs: Do solutions of 3D incompressible Euler equations blow-up in finite time?, Physica D: Nonlinear Phenomena, Volume 205 (2005) no. 1-4, p. 215 | DOI:10.1016/j.physd.2005.03.010
  • B. Audoly; A. Boudaoud Self-Similar Structures near Boundaries in Strained Systems, Physical Review Letters, Volume 91 (2003) no. 8 | DOI:10.1103/physrevlett.91.086105

Cité par 15 documents. Sources : Crossref

Commentaires - Politique