[Ruban à godets : un modèle élastique pour les fronces des feuillages]
On étudie la formation des fronces au bord des feuillages grâce à un modèle de bande élastique à courbure spontanée. Les équations d'équilibre de la bande sont établies explicitement. Une méthode numérique de résolution est présentée puis mise en œuvre. À cause des non-linéarités géométriques, on trouve plusieurs configurations d'équilibre ; une seule peut prétendre décrire les feuillages. Ceci constitue la premiére étude des fronces de feuillages s'appuyant sur les équations de l'élasticité.
The formation of ripples along the edge of plant leaves is studied using a model of an elastic strip with spontaneous curvature. The equations of equilibrium of the strip are established in an explicit form. A numerical method of solution is presented and carried out. Owing to the presence of geometric nonlinearities, several equilibrium configurations are found but we show that only one of them is physical. To our knowledge, this is the first investigation of ripples in plant leaves that is based on the equations of elasticity.
Accepté le :
Publié le :
Mots-clés : solides et structures, tiges élastiques, croissance en biologie
Basile Audoly 1 ; Arezki Boudaoud 2
@article{CRMECA_2002__330_12_831_0, author = {Basile Audoly and Arezki Boudaoud}, title = {{\textquoteleft}Ruban \`a godets{\textquoteright}: an elastic model for ripples in plant leaves}, journal = {Comptes Rendus. M\'ecanique}, pages = {831--836}, publisher = {Elsevier}, volume = {330}, number = {12}, year = {2002}, doi = {10.1016/S1631-0721(02)01545-0}, language = {en}, }
Basile Audoly; Arezki Boudaoud. ‘Ruban à godets’: an elastic model for ripples in plant leaves. Comptes Rendus. Mécanique, Volume 330 (2002) no. 12, pp. 831-836. doi : 10.1016/S1631-0721(02)01545-0. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01545-0/
[1] On the plant leaf's boundary, ‘jupe à godets’ and conformal embeddings, J. Phys. A, Volume 34 (2001), pp. 11069-11082
[2] E. Sharon, B. Roman, M. Marder, G.-S. Shin, H.L. Swinney, Buckling cascade in thin sheets, Nature (2002), in press
[3] P.L. Tchebychef, On the cut of clothes, talk at l'Association française pour l'avancement des sciences, 7th session, Paris, Meeting of 28 August 1878
[4] The shape of the edge of a leaf (2002) | arXiv
[5] Über das Gleihgewicht und die Bewegung eines unendlich dünnen elastichen Stabes, J. Math. (Crelle), Volume 56 (1859)
[6] Spatially complex equilibria for of buckled rods, Arch. Rational Mech. Anal, Volume 101 (1988), pp. 135-181
[7] The spatial complexity of localized buckling in rods with non circular cross section, SIAM J. Appl. Math, Volume 59 (1998), pp. 198-221
[8] Lock-on to tape-like behaviour in the torsional buckling of anisotropic rod, Physica D, Volume 112 (1998), pp. 201-224
[9] Dynamics of helical strips, Phys. Rev. E, Volume 61 (2000), pp. 4508-4517
[10] On the dynamics of elastic strips, J. Nonlinear Sci, Volume 11 (2001), pp. 3-45
[11] A Treatise on the Mathematical Theory of Elasticty, Dover, New York, 1944
[12] A. Audoly, B. Boudaoud, in preparation
- Cofilin-mediated actin filament network flexibility facilitates 2D to 3D actomyosin shape change, European Journal of Cell Biology, Volume 103 (2024) no. 1, p. 151379 | DOI:10.1016/j.ejcb.2023.151379
- Neutrally stable double-curved shells by inflection point propagation, Journal of the Mechanics and Physics of Solids, Volume 171 (2023), p. 105133 | DOI:10.1016/j.jmps.2022.105133
- Ripples at edges of blooming lilies and torn plastic sheets, Biophysical Journal, Volume 121 (2022) no. 12, p. 2389 | DOI:10.1016/j.bpj.2022.05.018
- Distributed Branch Points and the Shape of Elastic Surfaces with Constant Negative Curvature, Journal of Nonlinear Science, Volume 31 (2021) no. 1 | DOI:10.1007/s00332-020-09657-2
- Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets, EPL (Europhysics Letters), Volume 114 (2016) no. 2, p. 24003 | DOI:10.1209/0295-5075/114/24003
- Metric-Induced Wrinkling of a Thin Elastic Sheet, Journal of Nonlinear Science, Volume 24 (2014) no. 6, p. 1147 | DOI:10.1007/s00332-014-9214-9
- Structural Transition from Helices to Hemihelices, PLoS ONE, Volume 9 (2014) no. 4, p. e93183 | DOI:10.1371/journal.pone.0093183
- The maths of the pop-up tent, Nature (2012) | DOI:10.1038/nature.2012.12077
- Defects and boundary layers in non-Euclidean plates, Nonlinearity, Volume 25 (2012) no. 12, p. 3553 | DOI:10.1088/0951-7715/25/12/3553
- Shape selection in non-Euclidean plates, Physica D: Nonlinear Phenomena, Volume 240 (2011) no. 19, p. 1536 | DOI:10.1016/j.physd.2011.07.002
- Programmed buckling by controlled lateral swelling in a thin elastic sheet, Physical Review E, Volume 84 (2011) no. 3 | DOI:10.1103/physreve.84.036603
- Modeling and simulation of curled dry leaves, Soft Matter, Volume 7 (2011) no. 22, p. 10794 | DOI:10.1039/c1sm05998j
- Minimal resonances in annular non-Euclidean strips, Physical Review E, Volume 82 (2010) no. 5 | DOI:10.1103/physreve.82.056601
- An unfinished tale of nonlinear PDEs: Do solutions of 3D incompressible Euler equations blow-up in finite time?, Physica D: Nonlinear Phenomena, Volume 205 (2005) no. 1-4, p. 215 | DOI:10.1016/j.physd.2005.03.010
- Self-Similar Structures near Boundaries in Strained Systems, Physical Review Letters, Volume 91 (2003) no. 8 | DOI:10.1103/physrevlett.91.086105
Cité par 15 documents. Sources : Crossref
Commentaires - Politique