[Electrophorèse de deux particules en présence d'une paroi plane]
On examine l'électrophorèse d'une particule isolante, sous l'action d'un champ électrique uniforme , en présence d'une seconde particule isolante et d'une paroi plane parfaitement conductrice et normale à ou isolante et parallèle à . La méthode préconisée utilise 13 équations intégrales de frontière et on montre que, selon la nature (translation ou rotation) de la vitesse examinée, les intéractions paroi–particule peuvent être plus fortes ou moindres que les intéractions particule–particule.
Particle–boundary and particle–particle interactions in Electrophoresis are examined by considering a 2-particle cluster near a plane boundary. The advocated treatment holds for two insulating particles of arbitrary shapes and zeta potential functions and resorts to 13 boundary-integral equations. Preliminary results reveal that, depending upon the addressed velocity nature (translational or angular), wall–particle may be stronger or weaker than particle–particle interactions.
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides, Electrophorèse, Paroi plane, Interactions
Antoine Sellier 1
@article{CRMECA_2003__331_6_401_0, author = {Antoine Sellier}, title = {Electrophoresis of a 2-particle cluster near a plane boundary}, journal = {Comptes Rendus. M\'ecanique}, pages = {401--406}, publisher = {Elsevier}, volume = {331}, number = {6}, year = {2003}, doi = {10.1016/S1631-0721(03)00095-0}, language = {en}, }
Antoine Sellier. Electrophoresis of a 2-particle cluster near a plane boundary. Comptes Rendus. Mécanique, Volume 331 (2003) no. 6, pp. 401-406. doi : 10.1016/S1631-0721(03)00095-0. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00095-0/
[1] Colloid transport by interfacial forces, Ann. Rev. Fluid Mech., Volume 21 (1989), pp. 61-99
[2] Handbuch der Elektrizität und des Magnetismus (L. Graetz, ed.), J.A. Barth, Leipzig, 1921
[3] Electrophoresis of a particle of arbitrary shape, J. Colloid Interface Sci., Volume 34 (1970), pp. 210-214
[4] The motion of charged colloidal particles in electric fields, J. Chem. Phys., Volume 76 (1982) no. 11, pp. 5564-5573
[5] Effect of nonuniform zeta potential on particle movements in electric fields, J. Colloid Interface Sci., Volume 105 (1985), pp. 45-54
[6] Hydrodynamic interactions in electrophoresis, J. Colloid Interface Sci., Volume 54 (1976), pp. 117-133
[7] Particles interactions in electrophoresis: I. Motion of two spheres along their line of centers, J. Colloid Interface Sci., Volume 130 (1989) no. 2, pp. 542-555
[8] Particles interactions in electrophoresis: II. Motion of two spheres normal to their line of centers, J. Colloid Interface Sci., Volume 130 (1989) no. 2, pp. 556-567
[9] Electrophoresis of an insulating sphere normal to a conducting plane, J. Colloid Interface Sci., Volume 34 (1970), pp. 210-214
[10] Boundary effects on electrophoretic motion of colloidal spheres, J. Fluid Mech., Volume 153 (1985), pp. 417-439
[11] Electrophoresis of a colloidal sphere parallel to a dielectric plane, J. Fluid Mech., Volume 153 (1988), pp. 377-390
[12] On boundary effects in electrophoresis, C. R. Acad. Sci. Paris, Ser. IIb, Volume 329 (2001), pp. 565-570
[13] Low Reynolds Number Hydrodynamics, Martinus Nijhoff, 1973
[14] Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, 1992
[15] A note on the image system for a Stokeslet in a no-slip boundary, Proc. Cambridge Phil. Soc., Volume 70 (1971), pp. 303-310
[16] Boundary Integral Equations Methods for Solids and Fluids, Wiley, 1999
Cité par Sources :
Commentaires - Politique