[Minimisation d'énergie excédentaire dans solides dissipatifs]
Nous étudions la minimisation d'énergie excédentaire comme méthode possible de détermination des solutions sous forme de chemin de déformation pour des solides dissipatifs indépendant de temps. On considère les déformations quasi-statiques, et le travail de déformation est décomposé localement en deux parties, l'excédent d'énergie libre, et la dissipation intrinsèque. Nous discutons les conditions dérivées ici, nécessaires afin de rendre la procédure de minimisation applicable au problème posé.
The incremental energy minimization is examined as a method of determining solution paths for time-independent dissipative solids. Isothermal quasi-static deformations are considered, and the deformation work is locally decomposed into the increments in free energy and intrinsic dissipation. General conditions necessary for the applicability of the minimization procedure are derived and discussed.
Accepté le :
Publié le :
Mot clés : Solides et structures, Matériaux dissipatifs, Plasticité, Énergie, Stabilité des chemins
Henryk Petryk 1
@article{CRMECA_2003__331_7_469_0, author = {Henryk Petryk}, title = {Incremental energy minimization in dissipative solids}, journal = {Comptes Rendus. M\'ecanique}, pages = {469--474}, publisher = {Elsevier}, volume = {331}, number = {7}, year = {2003}, doi = {10.1016/S1631-0721(03)00109-8}, language = {en}, }
Henryk Petryk. Incremental energy minimization in dissipative solids. Comptes Rendus. Mécanique, Volume 331 (2003) no. 7, pp. 469-474. doi : 10.1016/S1631-0721(03)00109-8. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00109-8/
[1] A consistent energy approach to defining stability of plastic deformation processes (F.H. Schroeder, ed.), Stability in the Mechanics of Continua, Proc. IUTAM Symp., Nümbrecht, 1981, Springer, Berlin, 1982, pp. 262-272
[2] On energy criteria of plastic instability, Plastic Instability, Proc. Considère Memorial, École Nat. Ponts Chauss., Paris, 1985, pp. 215-226
[3] The energy criteria of instability in time-independent inelastic solids, Arch. Mech., Volume 43 (1991), pp. 519-545
[4] An analysis of stability of equilibrium and of quasi-static transformations on the basis of the dissipation function, Eur. J. Mech. A Solids, Volume 16 (1997), pp. 833-855
[5] Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, Volume 36 (1999), pp. 286-351
[6] Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals, J. Mech. Phys. Solids, Volume 50 (2002), pp. 2123-2167
[7] Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Solids, Volume 7 (1959), pp. 209-225
[8] Aspects of invariance in solids mechanics, Adv. Appl. Mech., 18, Academic Press, New York, 1978, pp. 1-75
[9] On discretized plasticity problems with bifurcations, Int. J. Solids Structures, Volume 29 (1992), pp. 745-765
[10] Post-critical plastic deformation in incrementally nonlinear materials, J. Mech. Phys. Solids, Volume 50 (2002), pp. 925-954
[11] Stability and constitutive inequalities in plasticity (W. Muschik, ed.), CISM Courses and Lectures, Vol. 336, Springer, Wien, 1993, pp. 259-329
[12] Second-order work and dissipation on indirect paths, C. R. Mecanique, Volume 330 (2002), pp. 121-126
[13] Stability and Nonlinear Solid Mechanics, Wiley, Chichester, 2000
Cité par Sources :
Commentaires - Politique