Comptes Rendus
Joseph Boussinesq and his approximation: a contemporary view
[Joseph Boussinesq et son approximation : un aperçu actuel]
Comptes Rendus. Mécanique, Volume 331 (2003) no. 8, pp. 575-586.

A hundred years ago, in his 1903 volume II of the monograph devoted to ‘Théorie Analytique de la Chaleur’, Joseph Valentin Boussinesq observes that: “The variations of density can be ignored except were they are multiplied by the acceleration of gravity in equation of motion for the vertical component of the velocity vector.” A spectacular consequence of this Boussinesq observation (called, in 1916, by Rayleigh, the ‘Boussinesq approximation’) is the possibility to work with a quasi-incompressible system of coupled dynamic, (Navier) and thermal (Fourier) equations where buoyancy is the main driving force. After a few words on the life of Boussinesq and on his observation, the applicability of this approximation is briefly discussed for various thermal, geophysical, astrophysical and magnetohydrodynamic problems in the framework of ‘Boussinesquian fluid dynamics’. An important part of our contemporary view is devoted to a logical (100 years later) justification of this Boussinesq approximation for a perfect gas and an ideal liquid in the framework of an asymptotic modelling of the full fluid dynamics (Euler and Navier–Stokes–Fourier) equations with especially careful attention given to the validity of this approximation.

En 1903, Gauthier-Villars éditait à Paris le tome II, du traité de Joseph Boussinesq intitulé : « Théorie Analytique de la Chaleur ». A la page VII de l'Avertissement à ce tome II Boussinesq écrit :

« .. il fallait encore observer que, dans la plupart des mouvements provoqués par la chaleur sur nos fluides pesants, les volumes ou les densités se conservent à très peu près, quoique la variation correspondante du poids¯ de l'unité de volume soit justement la cause des phénomènes qu'il s'agit d'analyser.

De là résulte la possibilité de négliger les variations de la densité, là où elles ne sont pas multipliées par la gravité g, tout en conservant, dans les calculs, leur produit par celle-ci ».

Cette observation est, ce que l'on appelle, aujourd'hui : « l'approximation de Boussinesq » (en accord avec l'appellation, en 1916, de Rayleigh), et une conséquence spectaculaire en est la possibilité de considérer un système d'équations quasi-incompressible couplé pour la dynamique (équation de Navier) et la température (équation de Fourier) pour lequel la poussée d'Archimède est la force active principale régissant le mouvement. Après un bref aperçu sur la vie de Boussinesq et sur son observation, l'application de l'approximation de Boussinesq (dans le cadre d'une « dynamique des fluides de Boussinesq ») pour les problèmes thermiques, géophysiques, astrophysiques et magnétohydrodynamiques fait l'objet de divers commentaires. Une part importante de notre aperçu actuel est consacrée à une justification logique de cette approximation de Boussinesq (100 ans après) pour un gaz parfait et un liquide ideal, dans le cadre d'une modélisation asymptotique des équations (d'Euler et de Navier–Stokes–Fourier) de la dynamique des fluides, avec une attention toute particulière pour ce qui concerne la validité de cette approximation.

Publié le :
DOI : 10.1016/S1631-0721(03)00120-7
Keywords: Fluid mechanics, Asymptotic modelling in fluid dynamics, Thermal convection, Geo-astro physical fluid dynamics, Magneto-hydrodynamics
Mots-clés : Mécanique des fluides, Modélisation asymptotique en dynamique des fluides, Convection thermique, Dynamique des fluides, Géo-astro physiques : Magnéto-hydrodynamique

Radyadour Kh. Zeytounian 1

1 12, rue Saint-Fiacre, 75002 Paris, France
@article{CRMECA_2003__331_8_575_0,
     author = {Radyadour Kh. Zeytounian},
     title = {Joseph {Boussinesq} and his approximation: a contemporary view},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {575--586},
     publisher = {Elsevier},
     volume = {331},
     number = {8},
     year = {2003},
     doi = {10.1016/S1631-0721(03)00120-7},
     language = {en},
}
TY  - JOUR
AU  - Radyadour Kh. Zeytounian
TI  - Joseph Boussinesq and his approximation: a contemporary view
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 575
EP  - 586
VL  - 331
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-0721(03)00120-7
LA  - en
ID  - CRMECA_2003__331_8_575_0
ER  - 
%0 Journal Article
%A Radyadour Kh. Zeytounian
%T Joseph Boussinesq and his approximation: a contemporary view
%J Comptes Rendus. Mécanique
%D 2003
%P 575-586
%V 331
%N 8
%I Elsevier
%R 10.1016/S1631-0721(03)00120-7
%G en
%F CRMECA_2003__331_8_575_0
Radyadour Kh. Zeytounian. Joseph Boussinesq and his approximation: a contemporary view. Comptes Rendus. Mécanique, Volume 331 (2003) no. 8, pp. 575-586. doi : 10.1016/S1631-0721(03)00120-7. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00120-7/

[1] J. Boussinesq Théorie Analytique de la Chaleur, Vol. II, Gauthier-Villars, Paris, 1903

[2] Lord Rayleigh Philos. Mag., 32 (1916), pp. 529-546

[3] J. Boussinesq Essai sur la Théorie des Eaux Courantes, Mémoires présentés par divers Savants à l'Acad. des Sci.-Institut de France, série 2, Vol. 23, 1877 (p. 1; Vol. 24, p. 1)

[4] D.J. Korteweg; G. de Vries Philos. Mag., 39 (1895), p. 422

[5] R.Kh. Zeytounian Phys.-Uspekhi, 38 (1995) no. 12, pp. 1333-1381

[6] E. Picard La vie et l'oeuvre de Joseph Boussinesq. Lecture faite en la séance annuelle du 11 décembre 1933, Gauthier-Villars, Paris, 1933 (p. 43)

[7] D.D. Joseph Stability of Fluid Motions, II, Springer-Verlag, Heidefberg, 1976

[8] A. Oberbeck Ann. Phys. Chem., Neue Folge, 7 (1879), pp. 271-292

[9] C. Eckart; H.G. Ferris Rev. Modern Phys., 28 (1956) no. 1, pp. 48-52

[10] P.G. Drazin; W.H. Reid Hydrodynamic Stability, Cambridge Univ. Press, 1981

[11] L.D. Landau; E.M. Lifshitz Guidrodinamika. Teoretitcheskaya Fizika, tome VI, Nauka, Moskva, 1988

[12] M. Grae Worster Annu. Rev. Fluid Mech., 9 (1997), pp. 91-122

[13] D.W. Hughes; M.R.E. Proctor Annu. Rev. Fluid Mech., 20 (1988), pp. 187-223

[14] P.H. Roberts; A.M. Soward Annu. Rev. Fluid Mech., 4 (1972), pp. 117-154

[15] G. Schubert Annu. Rev. Fluid Mech., 24 (1992), pp. 359-394

[16] M.G. Wurtele; R.D. Sharman; A. Datta Annu. Rev. Fluid Mech., 28 (1996), pp. 429-476

[17] E. Bodenschatz; W. Pesch; G. Ahlers Annu. Rev. Fluid Mech., 32 (2000), pp. 709-778

[18] J.C. McWilliams Annu. Rev. Fluid Mech., 28 (1996), pp. 215-248

[19] W.E. Langlois Annu. Rev. Fluid Mech., 17 (1985), pp. 191-215

[20] J.C.R. Hunt Annu. Rev. Fluid Mech., 23 (1991), pp. 1-42

[21] C.C. Lin; W.W. Roberts Annu. Rev. Fluid Mech., 13 (1981), pp. 33-55

[22] R.W. Griffiths Annu. Rev. Fluid Mech., 18 (1986), pp. 59-89

[23] C. Garrett; W. Munk Annu. Rev. Fluid Mech., 11 (1979), pp. 339-369

[24] J.S. Turner Annu. Rev. Fluid Mech., 17 (1985), pp. 11-44

[25] T.E. Dowling Annu. Rev. Fluid Mech., 27 (1995), pp. 293-334

[26] H. Jeffreys Proc. Cambridge Phil. Soc., 26 (1930), p. 170

[27] H. Bénard Rev. génér. des sci. pures appl., 11 (1900), pp. 1261-1271

[28] E.A. Spiegel; G. Veronis Astrophys. J., 135 (1960), pp. 131-656 (442–447; Corrections Astrophys. J., 1960, pp. 655)

[29] J. Mihaljan Astrophys. J., 136 (1962), p. 1126

[30] J.A. Dutton; G.H. Fichtl J. Atmosph. Sci., 26 (1969), p. 241

[31] N.E. Kotchin; I.A. Kibel; N.V. Roze Teoretitcheskaya Guidromekhanika. Part 1, FM, Moskva, 1963

[32] R.Kh. Zeytounian Meteorological Fluid Dynamics (J. Wess; D. Ruelle; R.L. Jaffe; J. Ehlers, eds.), Lecture Notes in Physics, vol. m5, Springer-Verlag, Heidelberg, 1991

[33] R.Kh. Zeytounian, On the foundations of the Boussinesq approximation applicable to atmospheric motions, Unpublished manuscript, 2003

[34] O.M. Phillips The Dynamics of the Upper Ocean, Cambridge Univ. Press, Cambridge, 1977

[35] D.P. Mc Kenzie; J.M. Roberts; N.O. Weiss J. Fluid Mech., 62 (1974) no. 3, pp. 465-538

[36] M.H. Houston; J.-Cl. De Bremaecker J. Geophys. Res., 80 (1975) no. 5, pp. 742-751

[37] L. Davoust; M.D. Cowley; R. Moreau; R. Bolcato J. Fluid Mech., 400 (1999), pp. 59-90

[38] H. Ben Hadid; D. Henry J. Fluid Mech., 333 (1997), pp. 57-83

[39] R. Hide Dynamics of the atmosphere of the majors planets, J. Atmos. Sci., Volume 26 (1969) no. 5, pp. 841-853

[40] C. de Jager Structure and Dynamics of the Solar Atmosphere, Springer-Verlag, Berlin, 1959

[41] G. Hadley Concerning the cause of the general trade-winds, Phil. Trans. Roy. Soc., Volume 29 (1735), pp. 58-62

[42] A.V. Getling Rayleigh–Bénard Convection; Structures and Dynamics, World Scientific, 1998

[43] R.Kh. Zeytounian Asymptotic Modelling of Fluid Flows Phenomena, FMIA 64, Kluwer, Dordrecht, 2002

[44] R.Kh. Zeytounian Archiv. Mech. (Archiwum Mechaniki Stosowanej), 26 (1974) no. 3, pp. 499-509

[45] R.Kh. Zeytounian Int. J. Engrg. Sci., 27 (1989) no. 11, p. 1361

[46] R.Kh. Zeytounian Phys.-Uspekhi, 41 (1998) no. 3, pp. 241-267

[47] P.A. Bois Geophys. Astrophys. Fluid Dyn., 58 (1991), pp. 45-55

[48] R.Kh. Zeytounian Theory and Applications of Nonviscous Fluid Flows, Springer-Verlag, Heidelberg, 2002

[49] R.Kh. Zeytounian Asymptotic Modeling of Atmospheric Flows, Springer-Verlag, Heidelberg, 1990

[50] P. Germain Mécanique, Tome II. Ecole Polytechnique, Ellipses, Palaiseau, 1986

[51] P.C. Dauby; G. Lebon J. Fluid Mech., 329 (1996), p. 25

[52] K.R. Rajagopal; M. Ruzicka; A.R. Srinivasa Math. Models Methods Appl. Sci., 6 (1996) no. 8, pp. 1157-1167

[53] J.W. Miles J. Fluid Mech., 33 (1968) no. 4, pp. 803-814

[54] V.N. Kozhevnikov Izv. AN SSSR: Atmospheric and Oceanic Phys., 4 (1968) no. 1, pp. 16-27

[55] J.-P. Guiraud; R.Kh. Zeytounian Geophys. Astrophys. Fluid Dyn., 12 (1/2) (1979), pp. 61-72

[56] P.A. Bois Geophys. Astrophys. Fluid Dyn., 29 (1984), pp. 267-303

[57] Ye.M. Pekelis Bull. (Izv.) Acad. Sci. USSR: Atmospheric and Oceanic Phys., 12 (1976) no. 5, pp. 470-477

[58] Y. Ogura; N.A. Phillips J. Atmosph. Sci., 19 (1962), pp. 173-179

[59] R.Kh. Zeytounian Izv. Acad. Sci. USSR: Atmospheric and Oceanic Phys., 15 (1979) no. 5, pp. 498-507

[60] R.Kh. Zeytounian Int. J. Engrg. Sci., 27 (1989) no. 11, p. 1361

  • Zhou Gong; Jiayou Ren; Pengfei Si; Lijun Shi; Ziyun Wang Effects of fluid–structure interaction on natural convection heat transfer in a square cavity divided by vertically flexible walls, Applied Thermal Engineering, Volume 265 (2025), p. 125616 | DOI:10.1016/j.applthermaleng.2025.125616
  • Zhongwu Xie; Wei Yin; Xiaoli Hao; Shaobo Zhang; Theofanis Psomas; Torbjörn Lindholm; Lars Ekberg Enhanced Heat Removal Using Buoyancy-Tracking Exhaust Vents for Moving Heat Sources in Industrial Environments: CFD and Experimental Study, Buildings, Volume 15 (2025) no. 10, p. 1719 | DOI:10.3390/buildings15101719
  • Jagannath Suresh; Gagan K. Goyal; Haozheng Wang; Lei Zuo Melt pool dynamics and microstructural growth prediction of additively manufactured thermoelectric material, CIRP Journal of Manufacturing Science and Technology, Volume 59 (2025), p. 170 | DOI:10.1016/j.cirpj.2025.03.004
  • Junhao Ke; S.W. Armfield; N. Williamson Non-Oberbeck–Boussinesq effects on the convective stability in a transient natural convection boundary layer for water, International Journal of Heat and Mass Transfer, Volume 241 (2025), p. 126670 | DOI:10.1016/j.ijheatmasstransfer.2025.126670
  • B. Jaismitha; J. Sasikumar Uncertainty analysis of MHD oscillatory flow of ternary nanofluids through a diverging channel: a comparative study of nanofluid composites, International Journal of Numerical Methods for Heat Fluid Flow, Volume 35 (2025) no. 1, p. 87 | DOI:10.1108/hff-04-2024-0281
  • Hui Liu; Changliang Li; Jingbo Sun Magnetohydrodynamic influence on fractional nanofluid convection in infinite vertical porous media with constant heat flux, Alexandria Engineering Journal, Volume 95 (2024), p. 224 | DOI:10.1016/j.aej.2024.03.085
  • Jiaxin Zhang; Junjie Liu; Shihao Wen; Sumei Liu Assessing the portable air cleaner's effectiveness and energy efficiency in targeted removal aerosols from a negative pressure isolation ward, Building and Environment, Volume 262 (2024), p. 111851 | DOI:10.1016/j.buildenv.2024.111851
  • Marcello Lappa Incompressible flows and the Boussinesq approximation: 50 years of CFD, Comptes Rendus. Mécanique, Volume 350 (2024) no. S1, p. 75 | DOI:10.5802/crmeca.134
  • S. Beuchler; A. Demircan; B. Endtmayer; U. Morgner; T. Wick Mathematical modeling and numerical multigoal-oriented a posteriori error control and adaptivity for a stationary, nonlinear, coupled flow temperature model with temperature dependent density, Computers Mathematics with Applications, Volume 175 (2024), pp. 138-151 | DOI:10.1016/j.camwa.2024.09.017 | Zbl:7967205
  • Wojciech Skarka; Michał Sobota; Piotr Antys; Michał Skarka Enhancing Energy Efficiency of a Dishwasher via Simulation Modeling, Energies, Volume 17 (2024) no. 13, p. 3076 | DOI:10.3390/en17133076
  • B. Jaismitha; J. Sasikumar Nonlinear dynamics of dissipative water conveying SWCNT / MWCNT / Ferro nanofluid subject to radiation: Thermal analysis by linear slope regression, Numerical Heat Transfer, Part A: Applications (2024), p. 1 | DOI:10.1080/10407782.2024.2350027
  • Wei Zhao Cascades of turbulent kinetic energy and multicomponent scalars in a momentum-scalar coupling turbulence driven by multiple mechanisms under homogeneous and isotropic hypotheses, Physical Review Fluids, Volume 9 (2024) no. 8 | DOI:10.1103/physrevfluids.9.084610
  • Marie Rodal; Daniel Margerit; Rupert Klein Slender vortex filaments in the Boussinesq approximation, Physics of Fluids, Volume 36 (2024) no. 5 | DOI:10.1063/5.0205028
  • Nurshat Mangnike; David Hyde, Proceedings of the Platform for Advanced Scientific Computing Conference (2024), p. 1 | DOI:10.1145/3659914.3659919
  • Qihang Shen; Jian Liu; Zaoyuan Li; Sheng Huang; Xuning Wu; Jinfei Sun; Donghua Su; Jin Li Experimental Study on the Effect of Rock Mechanical Properties and Fracture Morphology Features on Lost Circulation, SPE Journal, Volume 29 (2024) no. 08, p. 3964 | DOI:10.2118/219765-pa
  • Qian Wang; Nan Gui; Xingtuan Yang; Jiyuan Tu; Shengyao Jiang Transient characteristics of typical design basis accidents in integrated small reactor NHR200-II using RELAP5 model, Annals of Nuclear Energy, Volume 192 (2023), p. 110014 | DOI:10.1016/j.anucene.2023.110014
  • Xuming Wang; Yanfeng Liu; Cong Song; Longxiang Gao Characteristics of oxygenic-thermal coupled jet driven by concentration difference and temperature difference at high altitudes, Building and Environment, Volume 228 (2023), p. 109897 | DOI:10.1016/j.buildenv.2022.109897
  • Peter Bella; Eduard Feireisl; Florian Oschmann Rigorous derivation of the Oberbeck-Boussinesq approximation revealing unexpected term, Communications in Mathematical Physics, Volume 403 (2023) no. 3, pp. 1245-1273 | DOI:10.1007/s00220-023-04823-5 | Zbl:1533.35260
  • References, Geophysical Convection Dynamics (2023), p. 277 | DOI:10.1016/b978-0-32-391213-6.00029-5
  • Jun-Ichi Yano Rayleigh–Bénard convection, Geophysical Convection Dynamics (2023), p. 29 | DOI:10.1016/b978-0-32-391213-6.00010-6
  • Lin Ding; Haoyu He; Tian Song Vortex-induced vibration and heat dissipation of multiple cylinders under opposed thermal buoyancy, Ocean Engineering, Volume 270 (2023), p. 113669 | DOI:10.1016/j.oceaneng.2023.113669
  • Bernhard Endtmayer; Ayhan Demircan; Dmitrii Perevoznik; Uwe Morgner; Sven Beuchler; Thomas Wick Adaptive finite element simulations of laser‐heated material flow using a Boussinesq model, PAMM, Volume 23 (2023) no. 1 | DOI:10.1002/pamm.202200219
  • Antonio Barletta; Michele Celli; D. Andrew S. Rees On the Use and Misuse of the Oberbeck–Boussinesq Approximation, Physics, Volume 5 (2023) no. 1, p. 298 | DOI:10.3390/physics5010022
  • Anna Abbatiello; Eduard Feireisl The Oberbeck-Boussinesq system with non-local boundary conditions, Quarterly of Applied Mathematics, Volume 81 (2023) no. 2, pp. 297-306 | DOI:10.1090/qam/1635 | Zbl:1515.35179
  • Khadija Aayadi; Khalid Akhlil; Sultana Ben Aadi; Hicham Mahdioui Weak solutions to the time-fractional g-Bénard equations, Boundary Value Problems, Volume 2022 (2022), p. 17 (Id/No 70) | DOI:10.1186/s13661-022-01649-3 | Zbl:1513.76064
  • Edward A. Miller; Xi Chen; David M. Williams Versatile mixed methods for non-isothermal incompressible flows, Computers Mathematics with Applications, Volume 125 (2022), pp. 150-175 | DOI:10.1016/j.camwa.2022.08.044 | Zbl:1524.76220
  • Qunfeng Zou; Lin Ding; Haoyu He; Tian Song Investigation on heat transfer and flow-induced vibration of three cylinders in equilateral triangle arrangement, International Communications in Heat and Mass Transfer, Volume 136 (2022), p. 106177 | DOI:10.1016/j.icheatmasstransfer.2022.106177
  • Mojtaba Sedaghat; Ali Jahangiri; Mohammad Ameri; Amin Shahsavar An experimental/numerical investigation and technical analysis of improving the thermal performance of an enclosure by employing rotating cylinders, International Communications in Heat and Mass Transfer, Volume 138 (2022), p. 106370 | DOI:10.1016/j.icheatmasstransfer.2022.106370
  • Jia-Ning Fan; Yang Yang; Yi Wang; Zhixiang Cao; Ningbin Zhu; Bo Qian; Songheng Wu; Yu Zhou Droplet control of a local exhaust hood enhanced by air curtains, Journal of Building Engineering, Volume 59 (2022), p. 105092 | DOI:10.1016/j.jobe.2022.105092
  • N. Ackerman; J. Albert; M. Auger; D.J. Auty; I. Badhrees; P.S. Barbeau; L. Bartoszek; E. Baussan; V. Belov; C. Benitez-Medina; T. Bhatta; M. Breidenbach; T. Brunner; G.F. Cao; W.R. Cen; C. Chambers; B. Cleveland; R. Conley; S. Cook; M. Coon; W. Craddock; A. Craycraft; W. Cree; T. Daniels; L. Darroch; S.J. Daugherty; J. Daughhetee; C.G. Davis; J. Davis; S. Delaquis; A. Der Mesrobian-Kabakian; R. deVoe; T. Didberidze; J. Dilling; A. Dobi; A.G. Dolgolenko; M.J. Dolinski; M. Dunford; J. Echevers; L. Espic; W. Fairbank; D. Fairbank; J. Farine; W. Feldmeier; S. Feyzbakhsh; P. Fierlinger; K. Fouts; D. Franco; D. Freytag; D. Fudenberg; P. Gautam; G. Giroux; R. Gornea; K. Graham; G. Gratta; C. Hagemann; C. Hall; K. Hall; G. Haller; E.V. Hansen; C. Hargrove; R. Herbst; S. Herrin; J. Hodgson; M. Hughes; A. Iverson; A. Jamil; C. Jessiman; M.J. Jewell; A. Johnson; T.N. Johnson; S. Johnston; A. Karelin; L.J. Kaufman; R. Killick; T. Koffas; S. Kravitz; R. Krücken; A. Kuchenkov; K.S. Kumar; Y. Lan; A. Larson; D.S. Leonard; F. Leonard; F. LePort; G.S. Li; S. Li; Z. Li; C. Licciardi; Y.H. Lin; D. Mackay; R. MacLellan; M. Marino; J.-M. Martin; Y. Martin; T. McElroy; K. McFarlane; T. Michel; B. Mong; D.C. Moore; K. Murray; R. Neilson; R. Nelson; O. Njoya; O. Nusair; K. O'Sullivan; A. Odian; I. Ostrovskiy; C. Ouellet; A. Piepke; A. Pocar; C.Y. Prescott; K. Pushkin; F. Retiere; A. Rivas; A.L. Robinson; E. Rollin; P.C. Rowson; M.P. Rozo; J. Runge; J.J. Russell; S. Schmidt; A. Schubert; D. Sinclair; K. Skarpaas; S. Slutsky; E. Smith; A.K. Soma; V. Stekhanov; V. Strickland; M. Swift; M. Tarka; J. Todd; T. Tolba; D. Tosi; T.I. Totev; R. Tsang; K. Twelker; B. Veenstra; V. Veeraraghavan; J.-L. Vuilleumier; J.-M. Vuilleumier; M. Wagenpfeil; A. Waite; J. Walton; T. Walton; K. Wamba; J. Watkins; M. Weber; L.J. Wen; U. Wichoski; M. Wittgen; J. Wodin; J. Wood; G. Wrede; S.X. Wu; Q. Xia; L. Yang; Y.-R. Yen; O.Ya. Zeldovich; T. Ziegler The EXO-200 detector, part II: auxiliary systems, Journal of Instrumentation, Volume 17 (2022) no. 02, p. P02015 | DOI:10.1088/1748-0221/17/02/p02015
  • Antonio Barletta The Boussinesq approximation for buoyant flows, Mechanics Research Communications, Volume 124 (2022), p. 103939 | DOI:10.1016/j.mechrescom.2022.103939
  • Alexander Gelfgat Effect of interface dynamic deformations on instabilities of buoyancy-thermocapillary convection in a two-fluid two-layer system, Physical Review Fluids, Volume 7 (2022) no. 5 | DOI:10.1103/physrevfluids.7.053503
  • Mikhail A. Koskov, 29TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES, Volume 2371 (2021), p. 040003 | DOI:10.1063/5.0059562
  • Mark Dostalík; Ctirad Matyska; Vít Prša Weakly nonlinear analysis of Rayleigh-Bénard convection problem in extended Boussinesq approximation, Applied Mathematics and Computation, Volume 408 (2021), p. 14 (Id/No 126374) | DOI:10.1016/j.amc.2021.126374 | Zbl:1510.76050
  • Anna Kraszewska; Janusz Donizak An Analysis of a Laminar-Turbulent Transition and Thermal Plumes Behavior in a Paramagnetic Fluid Subjected to an External Magnetic Field, Energies, Volume 14 (2021) no. 23, p. 7972 | DOI:10.3390/en14237972
  • Tingsen Chen; Shi-Jie Cao Numerical study on the integrated effects of supplied air velocity and exhaust velocity on particles removal for industrial buildings, Energy and Built Environment, Volume 2 (2021) no. 4, p. 380 | DOI:10.1016/j.enbenv.2020.09.006
  • Mohammad Mohammadiun; Hamid Mohammadiun; Rasool Alizadeh; Mehrdad Mesgarpour; Amir Younesian; Saeed Jowkar The effect of variable temperature and location on relative thermal conductivity (RTC) on the heat pipe in the presence of AL2O3 nanoparticles: Numerical and optimization approaches, Journal of the Taiwan Institute of Chemical Engineers, Volume 124 (2021), p. 132 | DOI:10.1016/j.jtice.2021.04.050
  • Mehrdad Mesgarpour; Somchai Wongwises; Rasool Alizadeh; Hamid Mohammadiun; Mohammad Mohammadiun The comparative investigation of three approaches to modeling the natural convection heat transfer: A case studyon conical cavity filled with Al2O3 nanoparticles, Journal of the Taiwan Institute of Chemical Engineers, Volume 124 (2021), p. 174 | DOI:10.1016/j.jtice.2021.04.027
  • Shuolin Xiao; Chen Peng; Di Yang Large-eddy simulation of bubble plume in stratified crossflow, Physical Review Fluids, Volume 6 (2021) no. 4 | DOI:10.1103/physrevfluids.6.044613
  • Manoj Kumar Satheesan; Kwok Wai Mui; Ling Tim Wong A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards, Building Simulation, Volume 13 (2020) no. 4, p. 887 | DOI:10.1007/s12273-020-0623-4
  • Libin Ma; Bin Wang; Xiao Zhang Impact of seawater equation of state on the simulation of Atlantic Meridional Overturning Circulation, Climate Dynamics, Volume 54 (2020) no. 1-2, p. 1161 | DOI:10.1007/s00382-019-05052-0
  • José Luiz Boldrini; Exequiel Mallea-Zepeda; Marko Antonio Rojas-Medar Optimal boundary control for the stationary Boussinesq equations with variable density, Communications in Contemporary Mathematics, Volume 22 (2020) no. 5, p. 34 (Id/No 1950031) | DOI:10.1142/s0219199719500317 | Zbl:1443.49006
  • Alejandro Allendes; César Naranjo; Enrique Otárola Stabilized finite element approximations for a generalized Boussinesq problem: a posteriori error analysis, Computer Methods in Applied Mechanics and Engineering, Volume 361 (2020), p. 25 (Id/No 112703) | DOI:10.1016/j.cma.2019.112703 | Zbl:1442.76060
  • Paul Acevedo; Chérif Amrouche; Carlos Conca Lp theory for Boussinesq system with Dirichlet boundary conditions, Applicable Analysis, Volume 98 (2019) no. 1-2, pp. 272-294 | DOI:10.1080/00036811.2018.1530762 | Zbl:1409.35165
  • Yi Wang; Mengfan Quan; Yu Zhou Effect of velocity non-uniformity of supply air on the mixing characteristics of push-pull ventilation systems, Energy, Volume 187 (2019), p. 115962 | DOI:10.1016/j.energy.2019.115962
  • Fei Yang; Xuejun Shao; Xudong Fu; Ehsan Kazemi Simulated Flow Velocity Structure in Meandering Channels: Stratification and Inertia Effects Caused by Suspended Sediment, Water, Volume 11 (2019) no. 6, p. 1254 | DOI:10.3390/w11061254
  • Yu Zhou; Mengying Wang; Manning Wang; Yi Wang Predictive accuracy of Boussinesq approximation in opposed mixed convection with a high-temperature heat source inside a building, Building and Environment, Volume 144 (2018), p. 349 | DOI:10.1016/j.buildenv.2018.08.043
  • Alejandro Allendes; Gabriel R. Barrenechea; César Naranjo A divergence-free low-order stabilized finite element method for a generalized steady state Boussinesq problem, Computer Methods in Applied Mechanics and Engineering, Volume 340 (2018), pp. 90-120 | DOI:10.1016/j.cma.2018.05.020 | Zbl:1440.65170
  • Eduard Feireisl Singular Limits for Models of Compressible, Viscous, Heat Conducting, and/or Rotating Fluids, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2771 | DOI:10.1007/978-3-319-13344-7_70
  • Nabila Labsi; Youb Khaled Benkahla; Abdelkader Boutra; Meriem Titouah Convection heat transfer inside a lid-driven cavity filled with a shear-thinning Herschel–Bulkley fluid, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 40 (2018) no. 3 | DOI:10.1007/s40430-018-1051-6
  • Bernardo Alan de Freitas Duarte; Rafael Romão da Silva Melo; Millena Martins Villar; Ricardo Serfaty; Aristeu da Silveira Neto An extension of Oberbeck–Boussinesq approximation for thermal convection problems, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 40 (2018) no. 6 | DOI:10.1007/s40430-018-1181-x
  • Yu Zhou; Yelin Deng; Peng Wu; Shi-Jie Cao The effects of ventilation and floor heating systems on the dispersion and deposition of fine particles in an enclosed environment, Building and Environment, Volume 125 (2017), p. 192 | DOI:10.1016/j.buildenv.2017.08.049
  • Philipp W. Schroeder; Gert Lube Stabilised DG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes, Journal of Computational Physics, Volume 335 (2017), pp. 760-779 | DOI:10.1016/j.jcp.2017.01.055 | Zbl:1380.65286
  • Aneta Wróblewska-Kamińska The asymptotic analysis of the complete fluid system on a varying domain: from the compressible to the incompressible flow, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 5, pp. 3299-3334 | DOI:10.1137/15m1029655 | Zbl:1375.35407
  • Eduard Feireisl; Antonín Novotný Fluid Flow Modeling, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-63781-5_1
  • Eduard Feireisl; Antonín Novotný Asymptotic Analysis: An Introduction, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 145 | DOI:10.1007/978-3-319-63781-5_4
  • Eduard Feireisl; Antonín Novotný Singular Limits: Low Stratification, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 167 | DOI:10.1007/978-3-319-63781-5_5
  • Eduard Feireisl; Antonín Novotný Weak Solutions, A Priori Estimates, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 21 | DOI:10.1007/978-3-319-63781-5_2
  • Eduard Feireisl; Antonín Novotný Stratified Fluids, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 221 | DOI:10.1007/978-3-319-63781-5_6
  • Eduard Feireisl; Antonín Novotný Interaction of Acoustic Waves with Boundary, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 263 | DOI:10.1007/978-3-319-63781-5_7
  • Eduard Feireisl; Antonín Novotný Problems on Large Domains, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 313 | DOI:10.1007/978-3-319-63781-5_8
  • Eduard Feireisl; Antonín Novotný Vanishing Dissipation Limits, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 369 | DOI:10.1007/978-3-319-63781-5_9
  • Eduard Feireisl; Antonín Novotný Acoustic Analogies, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 409 | DOI:10.1007/978-3-319-63781-5_10
  • Eduard Feireisl; Antonín Novotný Appendix, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 429 | DOI:10.1007/978-3-319-63781-5_11
  • Eduard Feireisl; Antonín Novotný Existence Theory, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 49 | DOI:10.1007/978-3-319-63781-5_3
  • Eduard Feireisl; Antonín Novotný Bibliographical Remarks, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 501 | DOI:10.1007/978-3-319-63781-5_12
  • Eduard Feireisl Singular Limits for Models of Compressible, Viscous, Heat Conducting, and/or Rotating Fluids, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_70-1
  • Aicha Belcaid; Georges Le Palec; Abdeslam Draoui Numerical and experimental study of Boussinesq wall horizontal turbulent jet of fresh water in a static homogeneous environment of salt water, Journal of Hydrodynamics, Volume 27 (2015) no. 4, p. 604 | DOI:10.1016/s1001-6058(15)60522-4
  • Christian Komo Influence of surface roughness to solutions of the Boussinesq equations with Robin boundary condition, Revista Matemática Complutense, Volume 28 (2015) no. 1, pp. 123-151 | DOI:10.1007/s13163-014-0152-8 | Zbl:1309.35084
  • Christian Komo Optimal initial value conditions for the existence of strong solutions of the Boussinesq equations, Annali dell'Università di Ferrara. Sezione VII. Scienze Matematiche, Volume 60 (2014) no. 2, pp. 377-396 | DOI:10.1007/s11565-014-0208-1 | Zbl:1307.35228
  • Eduard Feireisl; Antonín Novotný Inviscid incompressible limits under mild stratification: a rigorous derivation of the Euler-Boussinesq system, Applied Mathematics and Optimization, Volume 70 (2014) no. 2, pp. 279-307 | DOI:10.1007/s00245-014-9243-7 | Zbl:1308.76231
  • Anthony Randriamampianina; Emilia Crespo del Arco A High‐Resolution Method for Direct Numerical Simulation of Instabilities and Transitions in a Baroclinic Cavity, Modeling Atmospheric and Oceanic Flows (2014), p. 297 | DOI:10.1002/9781118856024.ch16
  • Franck Varenne Modélisation et interdisciplinarité, Modélisation et interdisciplinarité (2014), p. 299 | DOI:10.3917/quae.nicol.2014.01.0299
  • Elisabetta Felaco; Ingenuin Gasser Modelling, asymptotic analysis and simulation of the gas dynamics in a chimney, Journal of Mathematics in Industry, Volume 3 (2013), p. 20 (Id/No 3) | DOI:10.1186/2190-5983-3-3 | Zbl:1274.35282
  • Maria Bauer; Elisabetta Felaco; Ingenuin Gasser On One-Dimensional Low Mach Number Applications, Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, Volume 120 (2013), p. 25 | DOI:10.1007/978-3-642-33221-0_2
  • Esmail M. A. Mokheimer Buoyancy Effects on Entropy Generation in the Entrance Region of Isothermal/Adiabatic Vertical Channel, Arabian Journal for Science and Engineering, Volume 37 (2012) no. 6, p. 1681 | DOI:10.1007/s13369-012-0271-9
  • Eduard Feireisl; Maria E. Schonbek On the Oberbeck–Boussinesq Approximation on Unbounded Domains, Nonlinear Partial Differential Equations, Volume 7 (2012), p. 131 | DOI:10.1007/978-3-642-25361-4_7
  • Angiolo Farina; Antonio Fasano; Andro Mikelić Non-Isothermal Flow of Molten Glass: Mathematical Challenges and Industrial Questions, Mathematical Models in the Manufacturing of Glass, Volume 2010 (2011), p. 173 | DOI:10.1007/978-3-642-15967-1_4
  • Alexander F. Shchepetkin; James C. McWilliams Accurate Boussinesq oceanic modeling with a practical, “Stiffened” Equation of State, Ocean Modelling, Volume 38 (2011) no. 1-2, p. 41 | DOI:10.1016/j.ocemod.2011.01.010
  • Gary B. Brassington System Design for Operational Ocean Forecasting, Operational Oceanography in the 21st Century (2011), p. 441 | DOI:10.1007/978-94-007-0332-2_18
  • Eduard Feireisl Mathematical models of incompressible fluids as singular limits of complete fluid systems, Milan Journal of Mathematics, Volume 78 (2010) no. 2, pp. 523-560 | DOI:10.1007/s00032-010-0128-1 | Zbl:1222.76030
  • N. A. Vinnichenko; A. V. Uvarov Improvement of the Oberbeck-Boussinesq approximation for solving unstationary convection problems in a closed cavity, Moscow University Physics Bulletin, Volume 65 (2010) no. 6, p. 454 | DOI:10.3103/s0027134910060056
  • The Simple Rayleigh (1916) Thermal Convection Problem, Convection in Fluids, Volume 90 (2009), p. 55 | DOI:10.1007/978-90-481-2433-6_3
  • A. Barletta Local energy balance, specific heats and the Oberbeck-Boussinesq approximation, International Journal of Heat and Mass Transfer, Volume 52 (2009) no. 21-22, pp. 5266-5270 | DOI:10.1016/j.ijheatmasstransfer.2009.06.006 | Zbl:1255.76128
  • Eduard Marušić-Paloka; Igor Pažanin Modelling of heat transfer in a laminar flow through a helical pipe, Mathematical and Computer Modelling, Volume 50 (2009) no. 11-12, pp. 1571-1582 | DOI:10.1016/j.mcm.2009.09.006 | Zbl:1185.76449
  • K. R. Rajagopal; G. Saccomandi; L. Vergori On the Oberbeck-Boussinesq approximation for fluids with pressure dependent viscosities, Nonlinear Analysis. Real World Applications, Volume 10 (2009) no. 2, pp. 1139-1150 | DOI:10.1016/j.nonrwa.2007.12.003 | Zbl:1167.76368
  • Dorin Bucur; Eduard Feireisl The incompressible limit of the full Navier-Stokes-Fourier system on domains with rough boundaries, Nonlinear Analysis. Real World Applications, Volume 10 (2009) no. 5, pp. 3203-3229 | DOI:10.1016/j.nonrwa.2008.10.024 | Zbl:1162.76048
  • E. Feireisl Chapter 2 Mathematical Methods in the Theory of Viscous Fluids, Volume 4 (2008), p. 57 | DOI:10.1016/s1874-5717(08)00002-9
  • E. Feireisl Asymptotic Properties of a Class of Weak Solutions to the Navier–Stokes–Fourier System, Hyperbolic Problems: Theory, Numerics, Applications (2008), p. 511 | DOI:10.1007/978-3-540-75712-2_49
  • Javier Principe; Ramon Codina A stabilized finite element approximation of low speed thermally coupled flows, International Journal of Numerical Methods for Heat Fluid Flow, Volume 18 (2008) no. 7-8, pp. 835-867 | DOI:10.1108/09615530810898980 | Zbl:1231.76162
  • ANGIOLO FARINA; ANTONIO FASANO; ANDRO MIKELIĆ ON THE EQUATIONS GOVERNING THE FLOW OF MECHANICALLY INCOMPRESSIBLE, BUT THERMALLY EXPANSIBLE, VISCOUS FLUIDS, Mathematical Models and Methods in Applied Sciences, Volume 18 (2008) no. 06, p. 813 | DOI:10.1142/s0218202508002875
  • Eduard Feireisl; Antonín Novotný; Hana Petzeltová Layered incompressible fluid flow equations in the limit of low Mach number and strong stratification, Physica D, Volume 237 (2008) no. 10-12, pp. 1466-1487 | DOI:10.1016/j.physd.2008.03.027 | Zbl:1143.76562
  • Chantal Staquet Internal gravity waves: parametric instability and deep ocean mixing, Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, p. 665 | DOI:10.1016/j.crme.2007.08.009
  • Эдуард Файрайзл; Eduard Feireisl Асимптотический анализ полной системы Навье - Стокса - Фурье: от течений сжимаемой к течениям несжимаемой жидкости, Успехи математических наук, Volume 62 (2007) no. 3, p. 169 | DOI:10.4213/rm6803
  • Radyadour Kh. Zeytounian The Many Faces of the Asymptotics of Low-Mach-Number Flows, Topics in Hyposonic Flow Theory, Volume 672 (2005), p. 27 | DOI:10.1007/11414346_2

Cité par 95 documents. Sources : Crossref, zbMATH

Commentaires - Politique