[Joseph Boussinesq et son approximation : un aperçu actuel]
A hundred years ago, in his 1903 volume II of the monograph devoted to ‘Théorie Analytique de la Chaleur’, Joseph Valentin Boussinesq observes that: “The variations of density can be ignored except were they are multiplied by the acceleration of gravity in equation of motion for the vertical component of the velocity vector.” A spectacular consequence of this Boussinesq observation (called, in 1916, by Rayleigh, the ‘Boussinesq approximation’) is the possibility to work with a quasi-incompressible system of coupled dynamic, (Navier) and thermal (Fourier) equations where buoyancy is the main driving force. After a few words on the life of Boussinesq and on his observation, the applicability of this approximation is briefly discussed for various thermal, geophysical, astrophysical and magnetohydrodynamic problems in the framework of ‘Boussinesquian fluid dynamics’. An important part of our contemporary view is devoted to a logical (100 years later) justification of this Boussinesq approximation for a perfect gas and an ideal liquid in the framework of an asymptotic modelling of the full fluid dynamics (Euler and Navier–Stokes–Fourier) equations with especially careful attention given to the validity of this approximation.
En 1903, Gauthier-Villars éditait à Paris le tome II, du traité de Joseph Boussinesq intitulé : « Théorie Analytique de la Chaleur ». A la page VII de l'Avertissement à ce tome II Boussinesq écrit :
« .. il fallait encore observer que, dans la plupart des mouvements provoqués par la chaleur sur nos fluides pesants, les volumes ou les densités se conservent à très peu près, quoique la variation correspondante du
De là résulte la possibilité de négliger les variations de la densité, là où elles ne sont pas multipliées par la gravité g, tout en conservant, dans les calculs, leur produit par celle-ci ».
Cette observation est, ce que l'on appelle, aujourd'hui : « l'approximation de Boussinesq » (en accord avec l'appellation, en 1916, de Rayleigh), et une conséquence spectaculaire en est la possibilité de considérer un système d'équations quasi-incompressible couplé pour la dynamique (équation de Navier) et la température (équation de Fourier) pour lequel la poussée d'Archimède est la force active principale régissant le mouvement. Après un bref aperçu sur la vie de Boussinesq et sur son observation, l'application de l'approximation de Boussinesq (dans le cadre d'une « dynamique des fluides de Boussinesq ») pour les problèmes thermiques, géophysiques, astrophysiques et magnétohydrodynamiques fait l'objet de divers commentaires. Une part importante de notre aperçu actuel est consacrée à une justification logique de cette approximation de Boussinesq (100 ans après) pour un gaz parfait et un liquide ideal, dans le cadre d'une modélisation asymptotique des équations (d'Euler et de Navier–Stokes–Fourier) de la dynamique des fluides, avec une attention toute particulière pour ce qui concerne la validité de cette approximation.
Mots-clés : Mécanique des fluides, Modélisation asymptotique en dynamique des fluides, Convection thermique, Dynamique des fluides, Géo-astro physiques : Magnéto-hydrodynamique
Radyadour Kh. Zeytounian 1
@article{CRMECA_2003__331_8_575_0, author = {Radyadour Kh. Zeytounian}, title = {Joseph {Boussinesq} and his approximation: a contemporary view}, journal = {Comptes Rendus. M\'ecanique}, pages = {575--586}, publisher = {Elsevier}, volume = {331}, number = {8}, year = {2003}, doi = {10.1016/S1631-0721(03)00120-7}, language = {en}, }
Radyadour Kh. Zeytounian. Joseph Boussinesq and his approximation: a contemporary view. Comptes Rendus. Mécanique, Volume 331 (2003) no. 8, pp. 575-586. doi : 10.1016/S1631-0721(03)00120-7. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00120-7/
[1] Théorie Analytique de la Chaleur, Vol. II, Gauthier-Villars, Paris, 1903
[2] Philos. Mag., 32 (1916), pp. 529-546
[3] Essai sur la Théorie des Eaux Courantes, Mémoires présentés par divers Savants à l'Acad. des Sci.-Institut de France, série 2, Vol. 23, 1877 (p. 1; Vol. 24, p. 1)
[4] Philos. Mag., 39 (1895), p. 422
[5] Phys.-Uspekhi, 38 (1995) no. 12, pp. 1333-1381
[6] La vie et l'oeuvre de Joseph Boussinesq. Lecture faite en la séance annuelle du 11 décembre 1933, Gauthier-Villars, Paris, 1933 (p. 43)
[7] Stability of Fluid Motions, II, Springer-Verlag, Heidefberg, 1976
[8] Ann. Phys. Chem., Neue Folge, 7 (1879), pp. 271-292
[9] Rev. Modern Phys., 28 (1956) no. 1, pp. 48-52
[10] Hydrodynamic Stability, Cambridge Univ. Press, 1981
[11] Guidrodinamika. Teoretitcheskaya Fizika, tome VI, Nauka, Moskva, 1988
[12] Annu. Rev. Fluid Mech., 9 (1997), pp. 91-122
[13] Annu. Rev. Fluid Mech., 20 (1988), pp. 187-223
[14] Annu. Rev. Fluid Mech., 4 (1972), pp. 117-154
[15] Annu. Rev. Fluid Mech., 24 (1992), pp. 359-394
[16] Annu. Rev. Fluid Mech., 28 (1996), pp. 429-476
[17] Annu. Rev. Fluid Mech., 32 (2000), pp. 709-778
[18] Annu. Rev. Fluid Mech., 28 (1996), pp. 215-248
[19] Annu. Rev. Fluid Mech., 17 (1985), pp. 191-215
[20] Annu. Rev. Fluid Mech., 23 (1991), pp. 1-42
[21] Annu. Rev. Fluid Mech., 13 (1981), pp. 33-55
[22] Annu. Rev. Fluid Mech., 18 (1986), pp. 59-89
[23] Annu. Rev. Fluid Mech., 11 (1979), pp. 339-369
[24] Annu. Rev. Fluid Mech., 17 (1985), pp. 11-44
[25] Annu. Rev. Fluid Mech., 27 (1995), pp. 293-334
[26] Proc. Cambridge Phil. Soc., 26 (1930), p. 170
[27] Rev. génér. des sci. pures appl., 11 (1900), pp. 1261-1271
[28] Astrophys. J., 135 (1960), pp. 131-656 (442–447; Corrections Astrophys. J., 1960, pp. 655)
[29] Astrophys. J., 136 (1962), p. 1126
[30] J. Atmosph. Sci., 26 (1969), p. 241
[31] Teoretitcheskaya Guidromekhanika. Part 1, FM, Moskva, 1963
[32] Meteorological Fluid Dynamics (J. Wess; D. Ruelle; R.L. Jaffe; J. Ehlers, eds.), Lecture Notes in Physics, vol. m5, Springer-Verlag, Heidelberg, 1991
[33] R.Kh. Zeytounian, On the foundations of the Boussinesq approximation applicable to atmospheric motions, Unpublished manuscript, 2003
[34] The Dynamics of the Upper Ocean, Cambridge Univ. Press, Cambridge, 1977
[35] J. Fluid Mech., 62 (1974) no. 3, pp. 465-538
[36] J. Geophys. Res., 80 (1975) no. 5, pp. 742-751
[37] J. Fluid Mech., 400 (1999), pp. 59-90
[38] J. Fluid Mech., 333 (1997), pp. 57-83
[39] Dynamics of the atmosphere of the majors planets, J. Atmos. Sci., Volume 26 (1969) no. 5, pp. 841-853
[40] Structure and Dynamics of the Solar Atmosphere, Springer-Verlag, Berlin, 1959
[41] Concerning the cause of the general trade-winds, Phil. Trans. Roy. Soc., Volume 29 (1735), pp. 58-62
[42] Rayleigh–Bénard Convection; Structures and Dynamics, World Scientific, 1998
[43] Asymptotic Modelling of Fluid Flows Phenomena, FMIA 64, Kluwer, Dordrecht, 2002
[44] Archiv. Mech. (Archiwum Mechaniki Stosowanej), 26 (1974) no. 3, pp. 499-509
[45] Int. J. Engrg. Sci., 27 (1989) no. 11, p. 1361
[46] Phys.-Uspekhi, 41 (1998) no. 3, pp. 241-267
[47] Geophys. Astrophys. Fluid Dyn., 58 (1991), pp. 45-55
[48] Theory and Applications of Nonviscous Fluid Flows, Springer-Verlag, Heidelberg, 2002
[49] Asymptotic Modeling of Atmospheric Flows, Springer-Verlag, Heidelberg, 1990
[50] Mécanique, Tome II. Ecole Polytechnique, Ellipses, Palaiseau, 1986
[51] J. Fluid Mech., 329 (1996), p. 25
[52] Math. Models Methods Appl. Sci., 6 (1996) no. 8, pp. 1157-1167
[53] J. Fluid Mech., 33 (1968) no. 4, pp. 803-814
[54] Izv. AN SSSR: Atmospheric and Oceanic Phys., 4 (1968) no. 1, pp. 16-27
[55] Geophys. Astrophys. Fluid Dyn., 12 (1/2) (1979), pp. 61-72
[56] Geophys. Astrophys. Fluid Dyn., 29 (1984), pp. 267-303
[57] Bull. (Izv.) Acad. Sci. USSR: Atmospheric and Oceanic Phys., 12 (1976) no. 5, pp. 470-477
[58] J. Atmosph. Sci., 19 (1962), pp. 173-179
[59] Izv. Acad. Sci. USSR: Atmospheric and Oceanic Phys., 15 (1979) no. 5, pp. 498-507
[60] Int. J. Engrg. Sci., 27 (1989) no. 11, p. 1361
- Effects of fluid–structure interaction on natural convection heat transfer in a square cavity divided by vertically flexible walls, Applied Thermal Engineering, Volume 265 (2025), p. 125616 | DOI:10.1016/j.applthermaleng.2025.125616
- Enhanced Heat Removal Using Buoyancy-Tracking Exhaust Vents for Moving Heat Sources in Industrial Environments: CFD and Experimental Study, Buildings, Volume 15 (2025) no. 10, p. 1719 | DOI:10.3390/buildings15101719
- Melt pool dynamics and microstructural growth prediction of additively manufactured thermoelectric material, CIRP Journal of Manufacturing Science and Technology, Volume 59 (2025), p. 170 | DOI:10.1016/j.cirpj.2025.03.004
- Non-Oberbeck–Boussinesq effects on the convective stability in a transient natural convection boundary layer for water, International Journal of Heat and Mass Transfer, Volume 241 (2025), p. 126670 | DOI:10.1016/j.ijheatmasstransfer.2025.126670
- Uncertainty analysis of MHD oscillatory flow of ternary nanofluids through a diverging channel: a comparative study of nanofluid composites, International Journal of Numerical Methods for Heat Fluid Flow, Volume 35 (2025) no. 1, p. 87 | DOI:10.1108/hff-04-2024-0281
- Magnetohydrodynamic influence on fractional nanofluid convection in infinite vertical porous media with constant heat flux, Alexandria Engineering Journal, Volume 95 (2024), p. 224 | DOI:10.1016/j.aej.2024.03.085
- Assessing the portable air cleaner's effectiveness and energy efficiency in targeted removal aerosols from a negative pressure isolation ward, Building and Environment, Volume 262 (2024), p. 111851 | DOI:10.1016/j.buildenv.2024.111851
- Incompressible flows and the Boussinesq approximation: 50 years of CFD, Comptes Rendus. Mécanique, Volume 350 (2024) no. S1, p. 75 | DOI:10.5802/crmeca.134
- Mathematical modeling and numerical multigoal-oriented a posteriori error control and adaptivity for a stationary, nonlinear, coupled flow temperature model with temperature dependent density, Computers Mathematics with Applications, Volume 175 (2024), pp. 138-151 | DOI:10.1016/j.camwa.2024.09.017 | Zbl:7967205
- Enhancing Energy Efficiency of a Dishwasher via Simulation Modeling, Energies, Volume 17 (2024) no. 13, p. 3076 | DOI:10.3390/en17133076
- Nonlinear dynamics of dissipative water conveying SWCNT / MWCNT / Ferro nanofluid subject to radiation: Thermal analysis by linear slope regression, Numerical Heat Transfer, Part A: Applications (2024), p. 1 | DOI:10.1080/10407782.2024.2350027
- Cascades of turbulent kinetic energy and multicomponent scalars in a momentum-scalar coupling turbulence driven by multiple mechanisms under homogeneous and isotropic hypotheses, Physical Review Fluids, Volume 9 (2024) no. 8 | DOI:10.1103/physrevfluids.9.084610
- Slender vortex filaments in the Boussinesq approximation, Physics of Fluids, Volume 36 (2024) no. 5 | DOI:10.1063/5.0205028
- , Proceedings of the Platform for Advanced Scientific Computing Conference (2024), p. 1 | DOI:10.1145/3659914.3659919
- Experimental Study on the Effect of Rock Mechanical Properties and Fracture Morphology Features on Lost Circulation, SPE Journal, Volume 29 (2024) no. 08, p. 3964 | DOI:10.2118/219765-pa
- Transient characteristics of typical design basis accidents in integrated small reactor NHR200-II using RELAP5 model, Annals of Nuclear Energy, Volume 192 (2023), p. 110014 | DOI:10.1016/j.anucene.2023.110014
- Characteristics of oxygenic-thermal coupled jet driven by concentration difference and temperature difference at high altitudes, Building and Environment, Volume 228 (2023), p. 109897 | DOI:10.1016/j.buildenv.2022.109897
- Rigorous derivation of the Oberbeck-Boussinesq approximation revealing unexpected term, Communications in Mathematical Physics, Volume 403 (2023) no. 3, pp. 1245-1273 | DOI:10.1007/s00220-023-04823-5 | Zbl:1533.35260
- References, Geophysical Convection Dynamics (2023), p. 277 | DOI:10.1016/b978-0-32-391213-6.00029-5
- Rayleigh–Bénard convection, Geophysical Convection Dynamics (2023), p. 29 | DOI:10.1016/b978-0-32-391213-6.00010-6
- Vortex-induced vibration and heat dissipation of multiple cylinders under opposed thermal buoyancy, Ocean Engineering, Volume 270 (2023), p. 113669 | DOI:10.1016/j.oceaneng.2023.113669
- Adaptive finite element simulations of laser‐heated material flow using a Boussinesq model, PAMM, Volume 23 (2023) no. 1 | DOI:10.1002/pamm.202200219
- On the Use and Misuse of the Oberbeck–Boussinesq Approximation, Physics, Volume 5 (2023) no. 1, p. 298 | DOI:10.3390/physics5010022
- The Oberbeck-Boussinesq system with non-local boundary conditions, Quarterly of Applied Mathematics, Volume 81 (2023) no. 2, pp. 297-306 | DOI:10.1090/qam/1635 | Zbl:1515.35179
- Weak solutions to the time-fractional
-Bénard equations, Boundary Value Problems, Volume 2022 (2022), p. 17 (Id/No 70) | DOI:10.1186/s13661-022-01649-3 | Zbl:1513.76064 - Versatile mixed methods for non-isothermal incompressible flows, Computers Mathematics with Applications, Volume 125 (2022), pp. 150-175 | DOI:10.1016/j.camwa.2022.08.044 | Zbl:1524.76220
- Investigation on heat transfer and flow-induced vibration of three cylinders in equilateral triangle arrangement, International Communications in Heat and Mass Transfer, Volume 136 (2022), p. 106177 | DOI:10.1016/j.icheatmasstransfer.2022.106177
- An experimental/numerical investigation and technical analysis of improving the thermal performance of an enclosure by employing rotating cylinders, International Communications in Heat and Mass Transfer, Volume 138 (2022), p. 106370 | DOI:10.1016/j.icheatmasstransfer.2022.106370
- Droplet control of a local exhaust hood enhanced by air curtains, Journal of Building Engineering, Volume 59 (2022), p. 105092 | DOI:10.1016/j.jobe.2022.105092
- The EXO-200 detector, part II: auxiliary systems, Journal of Instrumentation, Volume 17 (2022) no. 02, p. P02015 | DOI:10.1088/1748-0221/17/02/p02015
- The Boussinesq approximation for buoyant flows, Mechanics Research Communications, Volume 124 (2022), p. 103939 | DOI:10.1016/j.mechrescom.2022.103939
- Effect of interface dynamic deformations on instabilities of buoyancy-thermocapillary convection in a two-fluid two-layer system, Physical Review Fluids, Volume 7 (2022) no. 5 | DOI:10.1103/physrevfluids.7.053503
- , 29TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES, Volume 2371 (2021), p. 040003 | DOI:10.1063/5.0059562
- Weakly nonlinear analysis of Rayleigh-Bénard convection problem in extended Boussinesq approximation, Applied Mathematics and Computation, Volume 408 (2021), p. 14 (Id/No 126374) | DOI:10.1016/j.amc.2021.126374 | Zbl:1510.76050
- An Analysis of a Laminar-Turbulent Transition and Thermal Plumes Behavior in a Paramagnetic Fluid Subjected to an External Magnetic Field, Energies, Volume 14 (2021) no. 23, p. 7972 | DOI:10.3390/en14237972
- Numerical study on the integrated effects of supplied air velocity and exhaust velocity on particles removal for industrial buildings, Energy and Built Environment, Volume 2 (2021) no. 4, p. 380 | DOI:10.1016/j.enbenv.2020.09.006
- The effect of variable temperature and location on relative thermal conductivity (RTC) on the heat pipe in the presence of AL2O3 nanoparticles: Numerical and optimization approaches, Journal of the Taiwan Institute of Chemical Engineers, Volume 124 (2021), p. 132 | DOI:10.1016/j.jtice.2021.04.050
- The comparative investigation of three approaches to modeling the natural convection heat transfer: A case studyon conical cavity filled with Al2O3 nanoparticles, Journal of the Taiwan Institute of Chemical Engineers, Volume 124 (2021), p. 174 | DOI:10.1016/j.jtice.2021.04.027
- Large-eddy simulation of bubble plume in stratified crossflow, Physical Review Fluids, Volume 6 (2021) no. 4 | DOI:10.1103/physrevfluids.6.044613
- A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards, Building Simulation, Volume 13 (2020) no. 4, p. 887 | DOI:10.1007/s12273-020-0623-4
- Impact of seawater equation of state on the simulation of Atlantic Meridional Overturning Circulation, Climate Dynamics, Volume 54 (2020) no. 1-2, p. 1161 | DOI:10.1007/s00382-019-05052-0
- Optimal boundary control for the stationary Boussinesq equations with variable density, Communications in Contemporary Mathematics, Volume 22 (2020) no. 5, p. 34 (Id/No 1950031) | DOI:10.1142/s0219199719500317 | Zbl:1443.49006
- Stabilized finite element approximations for a generalized Boussinesq problem: a posteriori error analysis, Computer Methods in Applied Mechanics and Engineering, Volume 361 (2020), p. 25 (Id/No 112703) | DOI:10.1016/j.cma.2019.112703 | Zbl:1442.76060
-
theory for Boussinesq system with Dirichlet boundary conditions, Applicable Analysis, Volume 98 (2019) no. 1-2, pp. 272-294 | DOI:10.1080/00036811.2018.1530762 | Zbl:1409.35165 - Effect of velocity non-uniformity of supply air on the mixing characteristics of push-pull ventilation systems, Energy, Volume 187 (2019), p. 115962 | DOI:10.1016/j.energy.2019.115962
- Simulated Flow Velocity Structure in Meandering Channels: Stratification and Inertia Effects Caused by Suspended Sediment, Water, Volume 11 (2019) no. 6, p. 1254 | DOI:10.3390/w11061254
- Predictive accuracy of Boussinesq approximation in opposed mixed convection with a high-temperature heat source inside a building, Building and Environment, Volume 144 (2018), p. 349 | DOI:10.1016/j.buildenv.2018.08.043
- A divergence-free low-order stabilized finite element method for a generalized steady state Boussinesq problem, Computer Methods in Applied Mechanics and Engineering, Volume 340 (2018), pp. 90-120 | DOI:10.1016/j.cma.2018.05.020 | Zbl:1440.65170
- Singular Limits for Models of Compressible, Viscous, Heat Conducting, and/or Rotating Fluids, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2771 | DOI:10.1007/978-3-319-13344-7_70
- Convection heat transfer inside a lid-driven cavity filled with a shear-thinning Herschel–Bulkley fluid, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 40 (2018) no. 3 | DOI:10.1007/s40430-018-1051-6
- An extension of Oberbeck–Boussinesq approximation for thermal convection problems, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 40 (2018) no. 6 | DOI:10.1007/s40430-018-1181-x
- The effects of ventilation and floor heating systems on the dispersion and deposition of fine particles in an enclosed environment, Building and Environment, Volume 125 (2017), p. 192 | DOI:10.1016/j.buildenv.2017.08.049
- Stabilised DG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes, Journal of Computational Physics, Volume 335 (2017), pp. 760-779 | DOI:10.1016/j.jcp.2017.01.055 | Zbl:1380.65286
- The asymptotic analysis of the complete fluid system on a varying domain: from the compressible to the incompressible flow, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 5, pp. 3299-3334 | DOI:10.1137/15m1029655 | Zbl:1375.35407
- Fluid Flow Modeling, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-63781-5_1
- Asymptotic Analysis: An Introduction, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 145 | DOI:10.1007/978-3-319-63781-5_4
- Singular Limits: Low Stratification, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 167 | DOI:10.1007/978-3-319-63781-5_5
- Weak Solutions, A Priori Estimates, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 21 | DOI:10.1007/978-3-319-63781-5_2
- Stratified Fluids, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 221 | DOI:10.1007/978-3-319-63781-5_6
- Interaction of Acoustic Waves with Boundary, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 263 | DOI:10.1007/978-3-319-63781-5_7
- Problems on Large Domains, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 313 | DOI:10.1007/978-3-319-63781-5_8
- Vanishing Dissipation Limits, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 369 | DOI:10.1007/978-3-319-63781-5_9
- Acoustic Analogies, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 409 | DOI:10.1007/978-3-319-63781-5_10
- Appendix, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 429 | DOI:10.1007/978-3-319-63781-5_11
- Existence Theory, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 49 | DOI:10.1007/978-3-319-63781-5_3
- Bibliographical Remarks, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 501 | DOI:10.1007/978-3-319-63781-5_12
- Singular Limits for Models of Compressible, Viscous, Heat Conducting, and/or Rotating Fluids, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_70-1
- Numerical and experimental study of Boussinesq wall horizontal turbulent jet of fresh water in a static homogeneous environment of salt water, Journal of Hydrodynamics, Volume 27 (2015) no. 4, p. 604 | DOI:10.1016/s1001-6058(15)60522-4
- Influence of surface roughness to solutions of the Boussinesq equations with Robin boundary condition, Revista Matemática Complutense, Volume 28 (2015) no. 1, pp. 123-151 | DOI:10.1007/s13163-014-0152-8 | Zbl:1309.35084
- Optimal initial value conditions for the existence of strong solutions of the Boussinesq equations, Annali dell'Università di Ferrara. Sezione VII. Scienze Matematiche, Volume 60 (2014) no. 2, pp. 377-396 | DOI:10.1007/s11565-014-0208-1 | Zbl:1307.35228
- Inviscid incompressible limits under mild stratification: a rigorous derivation of the Euler-Boussinesq system, Applied Mathematics and Optimization, Volume 70 (2014) no. 2, pp. 279-307 | DOI:10.1007/s00245-014-9243-7 | Zbl:1308.76231
- A High‐Resolution Method for Direct Numerical Simulation of Instabilities and Transitions in a Baroclinic Cavity, Modeling Atmospheric and Oceanic Flows (2014), p. 297 | DOI:10.1002/9781118856024.ch16
- Modélisation et interdisciplinarité, Modélisation et interdisciplinarité (2014), p. 299 | DOI:10.3917/quae.nicol.2014.01.0299
- Modelling, asymptotic analysis and simulation of the gas dynamics in a chimney, Journal of Mathematics in Industry, Volume 3 (2013), p. 20 (Id/No 3) | DOI:10.1186/2190-5983-3-3 | Zbl:1274.35282
- On One-Dimensional Low Mach Number Applications, Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, Volume 120 (2013), p. 25 | DOI:10.1007/978-3-642-33221-0_2
- Buoyancy Effects on Entropy Generation in the Entrance Region of Isothermal/Adiabatic Vertical Channel, Arabian Journal for Science and Engineering, Volume 37 (2012) no. 6, p. 1681 | DOI:10.1007/s13369-012-0271-9
- On the Oberbeck–Boussinesq Approximation on Unbounded Domains, Nonlinear Partial Differential Equations, Volume 7 (2012), p. 131 | DOI:10.1007/978-3-642-25361-4_7
- Non-Isothermal Flow of Molten Glass: Mathematical Challenges and Industrial Questions, Mathematical Models in the Manufacturing of Glass, Volume 2010 (2011), p. 173 | DOI:10.1007/978-3-642-15967-1_4
- Accurate Boussinesq oceanic modeling with a practical, “Stiffened” Equation of State, Ocean Modelling, Volume 38 (2011) no. 1-2, p. 41 | DOI:10.1016/j.ocemod.2011.01.010
- System Design for Operational Ocean Forecasting, Operational Oceanography in the 21st Century (2011), p. 441 | DOI:10.1007/978-94-007-0332-2_18
- Mathematical models of incompressible fluids as singular limits of complete fluid systems, Milan Journal of Mathematics, Volume 78 (2010) no. 2, pp. 523-560 | DOI:10.1007/s00032-010-0128-1 | Zbl:1222.76030
- Improvement of the Oberbeck-Boussinesq approximation for solving unstationary convection problems in a closed cavity, Moscow University Physics Bulletin, Volume 65 (2010) no. 6, p. 454 | DOI:10.3103/s0027134910060056
- The Simple Rayleigh (1916) Thermal Convection Problem, Convection in Fluids, Volume 90 (2009), p. 55 | DOI:10.1007/978-90-481-2433-6_3
- Local energy balance, specific heats and the Oberbeck-Boussinesq approximation, International Journal of Heat and Mass Transfer, Volume 52 (2009) no. 21-22, pp. 5266-5270 | DOI:10.1016/j.ijheatmasstransfer.2009.06.006 | Zbl:1255.76128
- Modelling of heat transfer in a laminar flow through a helical pipe, Mathematical and Computer Modelling, Volume 50 (2009) no. 11-12, pp. 1571-1582 | DOI:10.1016/j.mcm.2009.09.006 | Zbl:1185.76449
- On the Oberbeck-Boussinesq approximation for fluids with pressure dependent viscosities, Nonlinear Analysis. Real World Applications, Volume 10 (2009) no. 2, pp. 1139-1150 | DOI:10.1016/j.nonrwa.2007.12.003 | Zbl:1167.76368
- The incompressible limit of the full Navier-Stokes-Fourier system on domains with rough boundaries, Nonlinear Analysis. Real World Applications, Volume 10 (2009) no. 5, pp. 3203-3229 | DOI:10.1016/j.nonrwa.2008.10.024 | Zbl:1162.76048
- Chapter 2 Mathematical Methods in the Theory of Viscous Fluids, Volume 4 (2008), p. 57 | DOI:10.1016/s1874-5717(08)00002-9
- Asymptotic Properties of a Class of Weak Solutions to the Navier–Stokes–Fourier System, Hyperbolic Problems: Theory, Numerics, Applications (2008), p. 511 | DOI:10.1007/978-3-540-75712-2_49
- A stabilized finite element approximation of low speed thermally coupled flows, International Journal of Numerical Methods for Heat Fluid Flow, Volume 18 (2008) no. 7-8, pp. 835-867 | DOI:10.1108/09615530810898980 | Zbl:1231.76162
- ON THE EQUATIONS GOVERNING THE FLOW OF MECHANICALLY INCOMPRESSIBLE, BUT THERMALLY EXPANSIBLE, VISCOUS FLUIDS, Mathematical Models and Methods in Applied Sciences, Volume 18 (2008) no. 06, p. 813 | DOI:10.1142/s0218202508002875
- Layered incompressible fluid flow equations in the limit of low Mach number and strong stratification, Physica D, Volume 237 (2008) no. 10-12, pp. 1466-1487 | DOI:10.1016/j.physd.2008.03.027 | Zbl:1143.76562
- Internal gravity waves: parametric instability and deep ocean mixing, Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, p. 665 | DOI:10.1016/j.crme.2007.08.009
- Асимптотический анализ полной системы Навье - Стокса - Фурье: от течений сжимаемой к течениям несжимаемой жидкости, Успехи математических наук, Volume 62 (2007) no. 3, p. 169 | DOI:10.4213/rm6803
- The Many Faces of the Asymptotics of Low-Mach-Number Flows, Topics in Hyposonic Flow Theory, Volume 672 (2005), p. 27 | DOI:10.1007/11414346_2
Cité par 95 documents. Sources : Crossref, zbMATH
Commentaires - Politique