[Sur les résonances dans un problème d'homogénéisation]
On considère un problème aux limites bidimensionnel pour l'équation de Helmholtz avec des conditions de Neumann sur un ensemble d'arcs. Cet ensemble s'obtient à partir d'une courbe fermée en supprimant des petites parties très proches les unes des autres et disposées de façon périodique. Nous déduisons le comportement asymptotique des fréquences de diffusion (pôles des prolongements analytiques des solutions) avec une petite partie imaginaire et nous montrons qu'elles impliquent l'existence des résonances.
We consider a two-dimensional boundary value problem for the Helmholtz equation with Neumann boundary condition on a set of arcs. This set is obtained from a closed curve by cutting out small holes situated closely each to other and having locally periodic structure. We construct asymptotics of scattering frequencies (poles of analytic continuation of solutions) with small imaginary parts and show that these scattering frequencies imply resonances.
Accepté le :
Publié le :
Mots-clés : Vibrations, Asymptotique, Un petit paramètre, Homogénéisation
Rustem R. Gadyl'shin 1
@article{CRMECA_2003__331_9_595_0, author = {Rustem R. Gadyl'shin}, title = {On resonances in a homogenization problem}, journal = {Comptes Rendus. M\'ecanique}, pages = {595--600}, publisher = {Elsevier}, volume = {331}, number = {9}, year = {2003}, doi = {10.1016/S1631-0721(03)00139-6}, language = {en}, }
Rustem R. Gadyl'shin. On resonances in a homogenization problem. Comptes Rendus. Mécanique, Volume 331 (2003) no. 9, pp. 595-600. doi : 10.1016/S1631-0721(03)00139-6. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00139-6/
[1] Boundary Value Problems in Domains with Fine-Grained Boundaries, Naukova Dumka, Kyiv, 1974 (in Russian)
[2] Boundary value problems in domains containing perforated walls (H. Brezis; J.-L. Lions, eds.), Nonlinear Partial Differential Equation and Their Applications College de France Seminar III, Res. Notes Math., 70, Pitman, London, 1982, pp. 309-325
[3] On analogs of Helmholtz resonator in averaging theory, Mat. Sb., Volume 193 (2002) no. 11, pp. 43-70 (English translation: Sb. Math., 193, 11, 2002, pp. 1611-1638)
[4] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, American Mathematical Society, Providence, RI, 1992
[5] Asymptotics of the eigenvalues of a boundary value problem with rapidly oscillating boundary conditions, Differentsial'nye Uravneniya, Volume 35 (1999) no. 4, pp. 540-551 (English translation: Differential Equations, 35, 4, 1999, pp. 540-551)
[6] Homogenization and asymptotics for a membrane with closely spaced clamping points, Zh. Vychisl. Mat. i Mat. Fiz., Volume 41 (2001) no. 12, pp. 1857-1869 (English translation: Comput. Math. Math. Phys., 41, 12, 2001, pp. 1765-1776)
[7] The theory of Helmholtz resonator, Proc. Roy. Soc. London Ser. A, Volume 92 (1916), pp. 265-275
Cité par Sources :
Commentaires - Politique