A continuum model for frictional slip of the yarns of a plain-weave fabric is presented. The model is based on the assumption that the weave is composed of two families of continuously distributed yarns constrained at all times to occupy a common evolving surface in three-dimensional space. The two families may slide relative to one another on the surface, subject to their respective equations of motion, fiber constitutive equations, and frictional slip rules. The theory is intended for the quantitative analysis of deformation, slip and energy dissipation during a ballistic impact event.
Un modèle continu de frottement avec glissement de fibres pour armure textile est présenté. Le modéle repose sur l'hypothése que l'armure est composée de deux familles de fibres contraintes d'occuper la même surface évoluant dans un espace à trois dimensions. Les deux familles peuvent glisser relativement l'une par rapport à l'autre sur cette surface, tout en étant soumises à leur équation de mouvement respective, aux équations constitutives des fibres et à leur loi de glissement. La théorie a pour but de présenter l'analyse quantitative de la déformation, du glissement et de l'énergie dissipée lors d'un impact balistique.
Accepted:
Published online:
Mots-clés : Milieux Continus, Textile, Friction, Déformations finites
Ben Nadler 1; David J. Steigmann 1
@article{CRMECA_2003__331_12_797_0, author = {Ben Nadler and David J. Steigmann}, title = {A model for frictional slip in woven fabrics}, journal = {Comptes Rendus. M\'ecanique}, pages = {797--804}, publisher = {Elsevier}, volume = {331}, number = {12}, year = {2003}, doi = {10.1016/j.crme.2003.09.004}, language = {en}, }
Ben Nadler; David J. Steigmann. A model for frictional slip in woven fabrics. Comptes Rendus. Mécanique, Volume 331 (2003) no. 12, pp. 797-804. doi : 10.1016/j.crme.2003.09.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.09.004/
[1] Dissipation of energy by bulletproof aramid fabric, J. Mat. Sci., Volume 32 (1997), pp. 4167-4173
[2] Physics of textiles, Physics Today (1977), pp. 23-30
[3] Underconstrained Structural Systems, Springer-Verlag, New York, 1991
[4] Equilibrium of elastic nets, Phil. Trans. Roy. Soc. Lond. A, Volume 335 (1991), pp. 419-454
[5] R.E. Jones, A yield-limited Lagrange multiplier formulation for frictional contact, Dissertation, U.C. Berkeley, 1998
[6] Computational Contact Mechanics, Wiley, Chichester, 2002
[7] R.E. Jones, P. Papadopoulos, Geometry and constitutive modeling of frictional surfaces, Manuscript, 2003
[8] Anisotropic dry friction between two orthotropic surfaces undergoing large displacements, Eur. J. Mech. A/Solids, Volume 12 (1993), pp. 631-666
[9] An experimental and theoretical investigation of biaxial stress-strain relations in a plain-weave cloth, J. Textile Inst., Volume 54 (1963), pp. 323-347
[10] On the deformation of slender filaments with planar crimp: theory, numerical solution and applications to tendon collagen and textile materials, Proc. Roy. Soc. Lond. A, Volume 372 (1980), pp. 33-64
[11] The elastic properties of woven polymeric fabric, Polymer Engrg. & Sci., Volume 30 (1990), pp. 1309-1313
[12] Friction and wear behaviour of Kevlar fabrics, J. Mat. Sci. (1993), pp. 1305-1311
[13] Tribological properties of woven para-aramid fabrics and their constituent yarns, J. Mat. Sci., Volume 33 (1998), pp. 3293-3301
[14] Admonton's law and fiber friction, J. Textile Inst., Volume 44 (1953), p. 59
Cited by Sources:
Comments - Policy