We consider a closed Rayleigh–Bénard cell containing a fluid near its gas–liquid critical point (CP). Due to the divergence of several physical properties near the CP, large Rayleigh numbers can be obtained even for small temperature differences. In the convective regime, the heat flow which is obtained on long time scales exhibits some characteristics of that observed in turbulent convection in normally compressible fluids: it is composed of plumes in thermal boundary layers, jets on lateral walls and a large-scale flow. Our results show that, as it is the case in turbulent convection, this large-scale flow can suddenly change its orientation.
On considère un fluide proche de son point critique liquide–gaz (PC) dans une cellule de Rayleigh–Bénard fermée. Du fait de la divergence de plusieurs propriétés physiques au voisinage du PC, des nombres de Rayleigh importants peuvent être obtenus pour de faibles différences de températures. Dans le régime convectif, le champ thermique obtenu sur les longues échelles de temps présente certaines caractéristiques de celui observé en convection turbulente dans un fluide normalement compressible : il est composé de panaches issus des couches limites thermiques, de jets le long des parois latérales et d'un écoulement à grande échelle. Nos résultats montrent que, comme en convection turbulente, cet écoulement peut soudain changer d'orientation.
Mots-clés : Mécanique des fluides, Fluide supercritique, Instabilité convective, Changement d'orientation de l'écoulement à grande échelle
Isabelle Raspo 1; Bernard Zappoli 2; Patrick Bontoux 1
@article{CRMECA_2004__332_5-6_353_0, author = {Isabelle Raspo and Bernard Zappoli and Patrick Bontoux}, title = {Unsteady two-dimensional convection in a bottom heated supercritical fluid}, journal = {Comptes Rendus. M\'ecanique}, pages = {353--360}, publisher = {Elsevier}, volume = {332}, number = {5-6}, year = {2004}, doi = {10.1016/j.crme.2004.02.003}, language = {en}, }
TY - JOUR AU - Isabelle Raspo AU - Bernard Zappoli AU - Patrick Bontoux TI - Unsteady two-dimensional convection in a bottom heated supercritical fluid JO - Comptes Rendus. Mécanique PY - 2004 SP - 353 EP - 360 VL - 332 IS - 5-6 PB - Elsevier DO - 10.1016/j.crme.2004.02.003 LA - en ID - CRMECA_2004__332_5-6_353_0 ER -
Isabelle Raspo; Bernard Zappoli; Patrick Bontoux. Unsteady two-dimensional convection in a bottom heated supercritical fluid. Comptes Rendus. Mécanique, Microgravity / La micropesanteur, Volume 332 (2004) no. 5-6, pp. 353-360. doi : 10.1016/j.crme.2004.02.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.02.003/
[1] Turbulent heat flow: Structures and scaling, Phys. Today, Volume 54 (2001) no. 8, pp. 34-39
[2] Rayleigh–Bénard convection near the gas–liquid critical point, Phys. Rev. Lett., Volume 70 (1993) no. 25, pp. 3888-3891
[3] Heat transfer and convection onset in a compressible fluid: 3He near the critical point, Phys. Rev. E, Volume 63 (2001), p. 056310
[4] The onset of free convection near the liquid-vapour critical point. Part I: Stationary initial state, Physica A, Volume 126 (1999), pp. 69-82
[5] Convective heat transport in compressible fluids, Phys. Rev. E, Volume 66 (2002), p. 016302
[6] Direct numerical simulation of instabilities in a two-dimensional near-critical fluid layer heated from below, J. Fluid. Mech., Volume 442 (2001), pp. 119-140
[7] Piston effect induced thermal oscillations at the Rayleigh–Bénard threshold in supercritical 3He, Phys. Rev. Lett., Volume 90 (2003), p. 105303
[8] Critical speeding up in pure fluids, Phys. Rev. A, Volume 41 (1990), pp. 2260-2263
[9] Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point, Phys. Rev. A, Volume 41 (1990), pp. 2256-2259
[10] Anomalous heat transport by the piston effect in supercritical fluids under zero gravity, Phys. Rev. A, Volume 41 (1990), pp. 2264-2267
[11] S. Paolucci, On the filtering of sound from the Navier–Stokes equations, Sandia National Laboratories Report SAND82-8257, 1982
[12] Criteria of occurrence of free convection in a compressible viscous heat-conducting fluid, J. Appl. Math. Mech., Volume 34 (1971) no. 2, pp. 305-311
[13] Thermoacoustic heating and cooling in near-critical fluids in the presence of a thermal plume, J. Fluid Mech., Volume 388 (1999), pp. 389-409
[14] The wind in confined thermal convection, J. Fluid Mech., Volume 449 (2001), pp. 169-178
[15] G. Accary, I. Raspo, P. Bontoux, B. Zappoli, Three-dimensional Rayleigh–Bénard instability in a supercritical fluid, C. R. Mécanique, in press
Cited by Sources:
Comments - Policy