Comptes Rendus
Microgravity and Transfer/Critical fluids
Unsteady two-dimensional convection in a bottom heated supercritical fluid
Comptes Rendus. Mécanique, Volume 332 (2004) no. 5-6, pp. 353-360.

We consider a closed Rayleigh–Bénard cell containing a fluid near its gas–liquid critical point (CP). Due to the divergence of several physical properties near the CP, large Rayleigh numbers can be obtained even for small temperature differences. In the convective regime, the heat flow which is obtained on long time scales exhibits some characteristics of that observed in turbulent convection in normally compressible fluids: it is composed of plumes in thermal boundary layers, jets on lateral walls and a large-scale flow. Our results show that, as it is the case in turbulent convection, this large-scale flow can suddenly change its orientation.

On considère un fluide proche de son point critique liquide–gaz (PC) dans une cellule de Rayleigh–Bénard fermée. Du fait de la divergence de plusieurs propriétés physiques au voisinage du PC, des nombres de Rayleigh importants peuvent être obtenus pour de faibles différences de températures. Dans le régime convectif, le champ thermique obtenu sur les longues échelles de temps présente certaines caractéristiques de celui observé en convection turbulente dans un fluide normalement compressible : il est composé de panaches issus des couches limites thermiques, de jets le long des parois latérales et d'un écoulement à grande échelle. Nos résultats montrent que, comme en convection turbulente, cet écoulement peut soudain changer d'orientation.

Published online:
DOI: 10.1016/j.crme.2004.02.003
Keywords: Fluid mechanics, Supercritical fluid, Convective instability, Reversal of large-scale flow
Mot clés : Mécanique des fluides, Fluide supercritique, Instabilité convective, Changement d'orientation de l'écoulement à grande échelle

Isabelle Raspo 1; Bernard Zappoli 2; Patrick Bontoux 1

1 Modélisation et simulation numérique en mécanique (MSNM), F.R.E. 2405 CNRS I.M.T., La Jetée, technopôle de Château Gombert, 38, rue Frédéric Joliot Curie, 13451 Marseille cedex 20, France
2 Centre national d'études spatiales (CNES), établissement de Toulouse, 18, avenue Edouard Belin, 31401 Toulouse cedex, France
@article{CRMECA_2004__332_5-6_353_0,
     author = {Isabelle Raspo and Bernard Zappoli and Patrick Bontoux},
     title = {Unsteady two-dimensional convection in a bottom heated supercritical fluid},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {353--360},
     publisher = {Elsevier},
     volume = {332},
     number = {5-6},
     year = {2004},
     doi = {10.1016/j.crme.2004.02.003},
     language = {en},
}
TY  - JOUR
AU  - Isabelle Raspo
AU  - Bernard Zappoli
AU  - Patrick Bontoux
TI  - Unsteady two-dimensional convection in a bottom heated supercritical fluid
JO  - Comptes Rendus. Mécanique
PY  - 2004
SP  - 353
EP  - 360
VL  - 332
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2004.02.003
LA  - en
ID  - CRMECA_2004__332_5-6_353_0
ER  - 
%0 Journal Article
%A Isabelle Raspo
%A Bernard Zappoli
%A Patrick Bontoux
%T Unsteady two-dimensional convection in a bottom heated supercritical fluid
%J Comptes Rendus. Mécanique
%D 2004
%P 353-360
%V 332
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2004.02.003
%G en
%F CRMECA_2004__332_5-6_353_0
Isabelle Raspo; Bernard Zappoli; Patrick Bontoux. Unsteady two-dimensional convection in a bottom heated supercritical fluid. Comptes Rendus. Mécanique, Volume 332 (2004) no. 5-6, pp. 353-360. doi : 10.1016/j.crme.2004.02.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.02.003/

[1] L.P. Kadanoff Turbulent heat flow: Structures and scaling, Phys. Today, Volume 54 (2001) no. 8, pp. 34-39

[2] M. Assenheimer; V. Steinberg Rayleigh–Bénard convection near the gas–liquid critical point, Phys. Rev. Lett., Volume 70 (1993) no. 25, pp. 3888-3891

[3] A.B. Kogan; H. Meyer Heat transfer and convection onset in a compressible fluid: 3He near the critical point, Phys. Rev. E, Volume 63 (2001), p. 056310

[4] P. Carlès; B. Ugurtas The onset of free convection near the liquid-vapour critical point. Part I: Stationary initial state, Physica A, Volume 126 (1999), pp. 69-82

[5] A. Furukawa; A. Onuki Convective heat transport in compressible fluids, Phys. Rev. E, Volume 66 (2002), p. 016302

[6] S. Amiroudine; P. Bontoux; P. Larroudé; B. Gilly; B. Zappoli Direct numerical simulation of instabilities in a two-dimensional near-critical fluid layer heated from below, J. Fluid. Mech., Volume 442 (2001), pp. 119-140

[7] S. Amiroudine; B. Zappoli Piston effect induced thermal oscillations at the Rayleigh–Bénard threshold in supercritical 3He, Phys. Rev. Lett., Volume 90 (2003), p. 105303

[8] H. Boukari; J.N. Shaumeyer; M.E. Briggs; R.W. Gammon Critical speeding up in pure fluids, Phys. Rev. A, Volume 41 (1990), pp. 2260-2263

[9] A. Onuki; H. Hao; R.A. Ferrell Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point, Phys. Rev. A, Volume 41 (1990), pp. 2256-2259

[10] B. Zappoli; D. Bailly; Y. Garrabos; B. Le Neindre; P. Guenoun; D. Beysens Anomalous heat transport by the piston effect in supercritical fluids under zero gravity, Phys. Rev. A, Volume 41 (1990), pp. 2264-2267

[11] S. Paolucci, On the filtering of sound from the Navier–Stokes equations, Sandia National Laboratories Report SAND82-8257, 1982

[12] M. Gitterman; V.A. Steinberg Criteria of occurrence of free convection in a compressible viscous heat-conducting fluid, J. Appl. Math. Mech., Volume 34 (1971) no. 2, pp. 305-311

[13] B. Zappoli; A. Jounet; S. Amiroudine; K. Mojtabi Thermoacoustic heating and cooling in near-critical fluids in the presence of a thermal plume, J. Fluid Mech., Volume 388 (1999), pp. 389-409

[14] J.J. Niemela; L. Skrbek; K.R. Sreenivasan; R.J. Donnelly The wind in confined thermal convection, J. Fluid Mech., Volume 449 (2001), pp. 169-178

[15] G. Accary, I. Raspo, P. Bontoux, B. Zappoli, Three-dimensional Rayleigh–Bénard instability in a supercritical fluid, C. R. Mécanique, in press

Cited by Sources:

Comments - Policy