Comptes Rendus
Microgravity and transfers/Solidification, crystal growth from the melt
Recent developments in Liquid Phase Electroepitaxial growth of bulk crystals under magnetic field
[Développements récents en cristallogénèse par Electro-Epitaxie en Phase Liquide (LPEE) sous l'effet d'un champ magnétique]
Comptes Rendus. Mécanique, Volume 332 (2004) no. 5-6, pp. 413-428.

Cet article présente une revue des développements récents en cristallogénèse par Electro-Epitaxie en Phase Liquide (LPEE), des monocristaux d'alliages semi-conducteurs, sous l'effet d'un champ magnétique statique. La vitesse de croissance est proportionnelle à l'intensité du courant électrique. Néanmoins, pour des courants élevés, la croissance devient instable, à cause de la convection forte dans la zone liquide. Il y a eu beaucoup de recherches ces dernières années pour diminuer et maı̂triser la convection naturelle et faire croı̂tre des cristaux plus grands. Les expériences de croissance par LPEE montrent que la vitesse de croissance sous champ magnétique est proportionnelle, à l'intensité du champ magnétique. La simulation numérique de la croissance par LPEE en présence d'un champ magnétique, fut également, un important objet de recherche. Les simulations numériques, en deux dimensions, prévoient que la convection naturelle est quasiment supprimée lorsque l'intensité du champ magnétique s'accroı̂t fortement. Or, des expériences et simulations tri-dimensionnelles montrent l'existence d'une valeur de l'intensité magnétique au-dessous de laquelle la croissance est stable et la convection est supprimée ; mais, à des intensités plus élevées, l'influence de la convection est très forte, ce qui conduit à une croissance irrégulière et des interfaces instables.

This review article presents recent developments in Liquid Phase Electroepitaxial (LPEE) growth of bulk single crystals of alloy semiconductors under an applied static magnetic field. The growth rate in LPEE is proportional to the applied electric current. However, at higher electric current levels the growth becomes unstable due to the strong convection occurring in the liquid zone. In order to address this problem, a significant body of research has been performed in recent years to suppress and control the natural convection for the purpose of prolonging the growth process to grow larger crystals. LPEE growth experiments show that the growth rate under an applied static magnetic field is also proportional and increases with the field intensity level. The modeling of LPEE growth under magnetic field was also the subject of interest. Two-dimensional mathematical models developed for the LPEE growth process predicted that the natural convection in the liquid zone would be suppressed almost completely with increasing the magnetic field level. However, experiments and also three-dimensional models have shown that there is an optimum magnetic field level below which the growth process is stable and the convection in the liquid zone is suppressed, but above such a field level the convective flow becomes very strong and leads to unstable growth with unstable interfaces.

Publié le :
DOI : 10.1016/j.crme.2004.02.019
Keywords: Instability, Magnetic field, Convection, Crystal growth, Electroepitaxy
Mot clés : Instabilité, Champ magnétique, Convection, Cristallogénèse, Électro-épitaxie
Sadik Dost 1 ; Brian Lent 2 ; Hamdi Sheibani 1, 2 ; Yongcai Liu 1

1 Crystal Growth Laboratory, University of Victoria, Victoria V8W 3P6, BC, Canada
2 DL Crystals Inc., R-Hut, McKenzie Road, Victoria V8W 3W2, BC, Canada
@article{CRMECA_2004__332_5-6_413_0,
     author = {Sadik Dost and Brian Lent and Hamdi Sheibani and Yongcai Liu},
     title = {Recent developments in {Liquid} {Phase} {Electroepitaxial} growth of bulk crystals under magnetic field},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {413--428},
     publisher = {Elsevier},
     volume = {332},
     number = {5-6},
     year = {2004},
     doi = {10.1016/j.crme.2004.02.019},
     language = {en},
}
TY  - JOUR
AU  - Sadik Dost
AU  - Brian Lent
AU  - Hamdi Sheibani
AU  - Yongcai Liu
TI  - Recent developments in Liquid Phase Electroepitaxial growth of bulk crystals under magnetic field
JO  - Comptes Rendus. Mécanique
PY  - 2004
SP  - 413
EP  - 428
VL  - 332
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2004.02.019
LA  - en
ID  - CRMECA_2004__332_5-6_413_0
ER  - 
%0 Journal Article
%A Sadik Dost
%A Brian Lent
%A Hamdi Sheibani
%A Yongcai Liu
%T Recent developments in Liquid Phase Electroepitaxial growth of bulk crystals under magnetic field
%J Comptes Rendus. Mécanique
%D 2004
%P 413-428
%V 332
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2004.02.019
%G en
%F CRMECA_2004__332_5-6_413_0
Sadik Dost; Brian Lent; Hamdi Sheibani; Yongcai Liu. Recent developments in Liquid Phase Electroepitaxial growth of bulk crystals under magnetic field. Comptes Rendus. Mécanique, Volume 332 (2004) no. 5-6, pp. 413-428. doi : 10.1016/j.crme.2004.02.019. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.02.019/

[1] L. Jastrzebski; H.C. Gatos; A.F. Witt Electromigration in current-controlled LPEE, J. Electrochem. Soc., Volume 123 (1976), p. 1121

[2] L. Jastrzebski; Y. Imamura; H.C. Gatos Thickness uniformity of GaAs layers grown by electroepitaxy, J. Electrochem. Soc., Volume 125 (1978), pp. 1140-1146

[3] A. Okamoto; L. Lagowski; H.C. Gatos Enhancement of interface stability in liquid-phase electroepitaxy, J. Appl. Phys., Volume 53 (1982), pp. 1706-1713

[4] T. Bryskiewicz; C.F. Boucher; J. Lagowski; H.C. Gatos Bulk GaAS crystal growth by liquid phase electroepitaxy, J. Crystal Growth, Volume 82 (1987), pp. 279-288

[5] T. Bryskiewicz; P. Edelman; Z. Wasilewski; D. Coulas; J. Noad Properties of very uniform InxGa1−xAs single-crystals grown by liquid-phase electroepitaxy, J. Appl. Phys., Volume 68 (1990), pp. 3018-3020

[6] T. Bryskiewicz; A. Laferriere Growth of alloy substrates by liquid phase electroepitaxy – theoretical considerations, J. Crystal Growth, Volume 129 (1993), pp. 429-442

[7] K. Nakajima Liquid-phase epitaxial-growth of very thick In1−xGaxAs layers with uniform composition by source-current-controlled method, J. Appl. Phys., Volume 61 (1987) no. 9, pp. 4626-4634

[8] S. Dost; Z. Qin A model for liquid phase electroepitaxial growth of ternary alloy semiconductors. 1 – Theory, Int. J. Electromagn. Mech., Volume 7 (1996) no. 2, pp. 109-128

[9] Z.R. Zytkiewicz Joule effect as a barrier for unrestricted growth of bulk crystals by liquid phase electroepitaxy, J. Crystal Growth, Volume 172 (1997), pp. 259-268

[10] K. Nakajima Layer thickness calculation of In1−xGaxAs grown by the source-current-controlled method – diffusion and electromigration limited growth, J. Crystal Growth, Volume 98 (1989), pp. 329-340

[11] K. Nakajima; T. Kusunoki; C. Takenaka Growth of ternary InxGa1−xAs bulk crystals with a uniform composition through supply of GaAs, J. Crystal Growth, Volume 113 (1991), pp. 485-490

[12] Z.R. Zytkiewicz Influence of convection on the composition profiles of thick GaAlAs layers grown by liquid-phase electroepitaxy, J. Crystal Growth, Volume 131 (1993), pp. 426-430

[13] S. Dost; H. Sheibani Mechanics of Electromagnetic Materials and Structures (J.S. Yang; G.A. Maugin, eds.), Stud. Appl. Electr. Mech., vol. 19, IOS Press, Amsterdam, 2000, pp. 17-29

[14] H. Sheibani, Liquid phase electroepitaxial bulk growth of binary and ternary alloy semiconductors under external magnetic field, Ph.D. Thesis, University of Victoria, Victoria, BC, Canada, July 2002

[15] H. Sheibani; S. Dost; S. Sakai; B. Lent Growth of bulk single crystals under applied magnetic field by liquid phase electroepitaxy, J. Crystal Growth, Volume 258 (2003), pp. 283-295

[16] S. Dost; Z. Qin A model for liquid phase electroepitaxy under an external magnetic field – 1. Theory, J. Crystal Growth, Volume 153 (1995), pp. 123-130

[17] Z. Qin; S. Dost; N. Djilali; B. Tabarrok A model for liquid phase electroepitaxy under an external magnetic field. 2. Application, J. Crystal Growth, Volume 153 (1995), pp. 131-139

[18] S. Dost Recent developments in modeling of liquid phase electroepitaxy: a continuum approach, Appl. Mech. Rev., Volume 49 (1996) no. 12, pp. 477-495

[19] Z. Qin; S. Dost A model for liquid phase electroepitaxial growth of ternary alloy semiconductors. 2. Application, Int. J. Electromagn. Mech., Volume 7 (1996) no. 2, pp. 129-142

[20] S. Dost; Z. Qin A numerical simulation model for liquid phase electroepitaxial growth of GaInAs, J. Crystal Growth, Volume 187 (1998), pp. 51-64

[21] S. Dost Numerical simulation of liquid phase electroepitaxial growth of GaInAs under magnetic field, ARI – the Bullettin of ITU, Volume 51 (1999), pp. 235-246

[22] S. Dost; Y.C. Liu; B. Lent A numerical simulation study for the effect of applied magnetic field in liquid phase electroepitaxy, J. Crystal Growth, Volume 240 (2002), pp. 39-51

[23] Y.C. Liu; H. Sheibani; S. Sakai; Y. Okano; S. Dost Computational Technologies for Fluid/Thermal/Structural/Chemical Systems with Industrial Applications (C.R. Kleijn; S. Kawano, eds.), ASME Proc. PVP, vol. 448-1, New York, 2002, pp. 65-72

[24] H. Sheibani; Y.C. Liu; S. Sakai; B. Lent; S. Dost The effect of applied magnetic field on the growth mechanisms of liquid phase electroepitaxy, Int. J. Engrg. Sci., Volume 41 (2003), pp. 401-415

[25] R.W. Series; D.T.J. Hurle The use of magnetic-fields in semiconductor crystal-growth, J. Crystal Growth, Volume 113 (1991), pp. 305-328

[26] Handbook of Crystal Growth 2: Bulk Crystal Growth, Part B: Growth Mechanisms and Dynamics (D.T.J. Hurle, ed.), North-Holland, 1994

[27] Y.C. Liu; Y. Okano; S. Dost The effect of applied magnetic field on flow structures in liquid phase electroepitaxy – a three-dimensional simulation model, J. Crystal Growth, Volume 244 (2002), pp. 12-26

[28] S. Dost; H.A. Erbay A continuum model for liquid-phase electroepitaxy, Int. J. Engrg. Sci., Volume 33 (1995), pp. 1385-1402

[29] A.C. Eringen; G.A. Maugin Electrodynamics of Continua I and II, Springer, New York, 1989

[30] Z. Qin; S. Dost; N. Djilali; B. Tabarrok Finite element model for liquid phase electroepitaxial growth of GaAs crystals, Int. J. Numer. Methods Engrg., Volume 38 (1995), pp. 3949-3968

[31] Y. Liu, S. Dost, H. Sheibani, A three-dimensional numerical simulation for the transport structures in liquid phase electroepitaxy under applied magnetic field, Int. J. Transport Phenomena, in press

[32] V. Timchenko; P.Y.P. Chen; G. de Vahl Davis; E. Leonardi; R. Abbaschian A computational study of transient plane front solidification of alloys in a Bridgman apparatus under microgravity conditions, Int. J. Heat Mass Transfer, Volume 43 (2000), pp. 963-980

[33] V. Timchenko; P.Y.P. Chen; G. de Vahl Davis; E. Leonardi; R. Abbaschian A computational study of binary alloy solidification in the Mephisto experiment, Int. J. Heat Mass Transfer, Volume 23 (2002), pp. 258-268

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Controlling the growth interface shape in the growth of CdTe single crystals by the traveling heater method

Sadik Dost; YongCai Liu

C. R. Méca (2007)