[Selection d'ondes de déformation non linéaires à deux dimensions dans des milieux à microstructure]
On montre que dans un milieu élastique à microstructure le gradient de micro-déplacement permet la propagation de longues ondes localisées non linéaires de déformation en deux dimensions. Ces ondes penvent exister même en présence de dissipation et d'apport d'énergie mais pour des valeurs précises de l'amplitude de l'onde et sa vitesse de propagation. Une augmentation on une diminution de ces deux quantités se produit plus rapidement dans la phase initiale de propagation que pour une onde plane localisée. Cependont, les valeurs stationnaires sélectionnées par l'apport et perte d'énergie sont plus élevées que pour les ondes planes.
It is shown that the micro-displacement gradient allows the propagation of two-dimensional localized long nonlinear strain waves in a medium with microstructure. These waves may exist even in the presence of dissipation and energy input in the microstructured medium but with selected values of the wave amplitude and velocity. An increase or a decrease in the wave amplitude and velocity happens faster at the initial stage than that of the plane localized wave. However, their steady values selected by the energy input/output, are higher for the plane waves.
Accepté le :
Publié le :
Mots-clés : Mécanique des solides numérique, Ondes non linéaires, Microstructure
Alexey V. Porubov 1 ; Franco Pastrone 2 ; Gérard A. Maugin 3
@article{CRMECA_2004__332_7_513_0, author = {Alexey V. Porubov and Franco Pastrone and G\'erard A. Maugin}, title = {Selection of two-dimensional nonlinear strain waves in~micro-structured media}, journal = {Comptes Rendus. M\'ecanique}, pages = {513--518}, publisher = {Elsevier}, volume = {332}, number = {7}, year = {2004}, doi = {10.1016/j.crme.2004.02.020}, language = {en}, }
TY - JOUR AU - Alexey V. Porubov AU - Franco Pastrone AU - Gérard A. Maugin TI - Selection of two-dimensional nonlinear strain waves in micro-structured media JO - Comptes Rendus. Mécanique PY - 2004 SP - 513 EP - 518 VL - 332 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2004.02.020 LA - en ID - CRMECA_2004__332_7_513_0 ER -
Alexey V. Porubov; Franco Pastrone; Gérard A. Maugin. Selection of two-dimensional nonlinear strain waves in micro-structured media. Comptes Rendus. Mécanique, Volume 332 (2004) no. 7, pp. 513-518. doi : 10.1016/j.crme.2004.02.020. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.02.020/
[1] Nonlinear Waves in Elastic Crystals, Oxford University Press, UK, 1999
[2] Wave Processes in Solids with Microstructure, World Scientific, Singapore, 2003
[3] Nonlinear bell-shaped and kink-shaped strain waves in microstructured solids, Int. J. Nonlinear Mech., Volume 40 (2004) (available online)
[4] On the stability of solitary waves in a weakly dispersive media, Sov. Phys. Dokl., Volume 15 (1970), pp. 539-541
[5] Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981
[6] Theory of micropolar elasticity (H. Liebowitz, ed.), Fracture. An Advanced Treatise, vol. 2, Mathematical Fundamentals, Academic Press, New York, 1968
[7] Microstructure in linear elasticity, Arch. Rational Mech. Anal., Volume 1 (1964), pp. 51-78
[8] Finite Deformations of an Elastic Solid, Wiley, New York, 1951
[9] The Theory of Linear Viscoelasticity, Oxford University Press, Oxford, 1960
- Copious closed forms of solutions for the fractional nonlinear longitudinal strain wave equation in microstructured solids, Mathematical Problems in Engineering, Volume 2020 (2020), p. 8 (Id/No 3498796) | DOI:10.1155/2020/3498796 | Zbl:1544.74045
- Bulk Nonlinear Elastic StrainWaves in a Bar with Nanosize Inclusions, Generalized Models and Non-classical Approaches in Complex Materials 1, Volume 89 (2018), p. 395 | DOI:10.1007/978-3-319-72440-9_21
- On the pseudolocalized solutions in multi-dimension of Boussinesq equation, Mathematics and Computers in Simulation, Volume 127 (2016), pp. 19-27 | DOI:10.1016/j.matcom.2012.06.015 | Zbl:1520.35105
- Modelling 2D wave motion in microstructured solids, Mechanics Research Communications, Volume 56 (2014), p. 42 | DOI:10.1016/j.mechrescom.2013.11.007
- Numerical implementation of the asymptotic boundary conditions for steadily propagating 2D solitons of Boussinesq type equations, Mathematics and Computers in Simulation, Volume 82 (2012) no. 6, pp. 1079-1092 | DOI:10.1016/j.matcom.2010.07.030 | Zbl:1320.76031
- Perturbation solution for the 2D Boussinesq equation, Mechanics Research Communications, Volume 38 (2011) no. 3, pp. 274-281 | DOI:10.1016/j.mechrescom.2011.01.014 | Zbl:1272.76182
- Hierarchical structures in complex solids with microscales, Proceedings of the Estonian Academy of Sciences, Volume 59 (2010) no. 2, pp. 79-86 | DOI:10.3176/proc.2010.2.04 | Zbl:1375.74014
- Wave propagation in solids with vectorial microstructures, Wave Motion, Volume 47 (2010) no. 6, pp. 358-369 | DOI:10.1016/j.wavemoti.2009.12.006 | Zbl:1231.74243
- Linear and nonlinear wave propagation in coated or uncoated elastic half-spaces, Waves in nonlinear pre-stressed materials. Papers based on the presentation at CISM course, Udine, Italy, September 2006., Wien: Springer, 2007, pp. 103-127 | DOI:10.1007/978-3-211-73572-5_4 | Zbl:1167.74022
- Propagation of
-type solitary waves in higher-order KdV-type systems, Chaos, Solitons and Fractals, Volume 26 (2005) no. 2, pp. 453-465 | DOI:10.1016/j.chaos.2004.12.045 | Zbl:1153.74340
Cité par 10 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier