[Sur la paradigme de Boussinesq pour la propagation d'ondes non linéaires]
L'obtention originale de sa célèbre équation gouvernant les ondes de surface sur une couche fluide par Boussinesq a ouvert de nouveaux horizons qui devaient conduire au concept de soliton. La présente contribution concerne l'ensemble des équations du type Boussinesq sous le titre général de « paradigme de Boussinesq ». Celles-ci sont de véritables équations bi-directionnelles qui apparaissent dans de nombreuses situations physiques et partagent des propriétés analogues. L'accent est mis sur : (i) les système généralisés de Boussinesq qui impliquent une dispersion linéaire d'ordre supérieur soit en raison de la présence de dérivées spatiales d'ordre supérieur, soit avec la contribution d'autres opérateurs d'onde (équation à « double dispersion ») ; et (ii) la « mécanique » des solutions les plus représentatives d'ondes non linéaires localisées qui en résulte. Des généralisations dissipatives et à deux dimensions d'espace sont également envisagées.
Boussinesq's original derivation of his celebrated equation for surface waves on a fluid layer opened up new horizons that were to yield the concept of the soliton. The present contribution concerns the set of Boussinesq-like equations under the general title of ‘Boussinesq's paradigm’. These are true bi-directional wave equations occurring in many physical instances and sharing analogous properties. The emphasis is placed: (i) on generalized Boussinesq systems that involve higher-order linear dispersion through either additional space derivatives or additional wave operators (so-called double-dispersion equations); and (ii) on the ‘mechanics’ of the most representative localized nonlinear wave solutions. Dissipative cases and two-dimensional generalizations are also considered.
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides numérique, Boussinesq, Ondes non linéaires, Solides élastiques, Réseau cristallin, Solitons, Équation de Korteweg–de Vries
Christo I. Christov 1 ; Gérard A. Maugin 2 ; Alexey V. Porubov 3
@article{CRMECA_2007__335_9-10_521_0, author = {Christo I. Christov and G\'erard A. Maugin and Alexey V. Porubov}, title = {On {Boussinesq's} paradigm in nonlinear wave propagation}, journal = {Comptes Rendus. M\'ecanique}, pages = {521--535}, publisher = {Elsevier}, volume = {335}, number = {9-10}, year = {2007}, doi = {10.1016/j.crme.2007.08.006}, language = {en}, }
TY - JOUR AU - Christo I. Christov AU - Gérard A. Maugin AU - Alexey V. Porubov TI - On Boussinesq's paradigm in nonlinear wave propagation JO - Comptes Rendus. Mécanique PY - 2007 SP - 521 EP - 535 VL - 335 IS - 9-10 PB - Elsevier DO - 10.1016/j.crme.2007.08.006 LA - en ID - CRMECA_2007__335_9-10_521_0 ER -
Christo I. Christov; Gérard A. Maugin; Alexey V. Porubov. On Boussinesq's paradigm in nonlinear wave propagation. Comptes Rendus. Mécanique, Joseph Boussinesq, a Scientist of bygone days and present times, Volume 335 (2007) no. 9-10, pp. 521-535. doi : 10.1016/j.crme.2007.08.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.08.006/
[1] Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, Volume 72 (1871), pp. 755-759
[2] Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., Volume 17 (1872), pp. 55-108
[3] On waves, Phil. Mag. (5), Volume 1 (1876), pp. 257-279
[4] On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. (5), Volume 39 (1895), pp. 422-443
[5] The long-wave paradox in the theory of gravity waves, Proc. Cambr. Phil. Soc., Volume 49 (1953), pp. 685-694
[6] Conservative difference scheme for Boussinesq model of surface waves (K. Morton; J. Baines, eds.), Proceedings ICFD 5, Oxford University Press, Oxford, 1996, pp. 343-349
[7] An energy-consistent Galilean-invariant dispersive shallow-water model, Wave Motion, Volume 34 (2001), pp. 161-174
[8] Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985
[9] Dynamics of nonlinear mass-spring chains near the continuum limit, Phys. Lett., Volume 118A (1987), pp. 222-227
[10] Model equation for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc. London A, Volume 272 (1972), pp. 47-78
[11] Nonlinear waves in rods, J. Appl. Math. Mech., Volume 41 (1977), pp. 543-549 (English translation of P.M.M.)
[12] Solitary wave interactions in elastic rods, Stud. Appl. Math., Volume 75 (1986), pp. 95-122
[13] Théorie nouvelle des ondes lumineuses, J. Math. Pures Appl., Série 2, Volume 13 (1870), pp. 313-339
[14] Nonlinear Waves in Elastic Crystals, Oxford Univ. Press, Oxford, UK, 1999
[15] Nonlinear longitudinal dispersive waves in elastic rods, J. Math. Phys. Sci., Volume 4 (1970), pp. 64-73
[16] Modulated Waves—Theory and applications, The Johns Hopkins Univ. Press, Baltimore, 1999
[17] Strain Solitons in Solids and How to Construct Them, Chapman and Hall/CRC, Boca Raton, 2001
[18] Nonlinear duality between elastic waves and quasi-particles (C.I. Christov; A. Guran, eds.), Selected Topics in Nonlinear Wave Mechanics, Birkhäuser, Boston, 2002, pp. 117-160
[19] Numerical investigation of the long-time evolution and interaction of localized waves (M.G. Velarde; C.I. Christov, eds.), Fluid Physics, World Scientific, Singapore, 1995, pp. 353-378
[20] Inelastic collisions of Boussinesq solitons, Int. J. Bifurcation Chaos, Volume 5 (1994), pp. 1095-1112
[21] Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981
[22] A numerical venture into the menagerie of coherent structures of generalized Boussinesq systems (M. Remoissenet; M. Peyrard, eds.), Coherent Structures in Physics and Biology, Springer, Berlin, 1991, pp. 206-215
[23] An implicit difference scheme for the long-time evolution of localized solutions of a generalized Boussinesq system, J. Comput. Phys., Volume 116 (1995), pp. 39-51
[24] Numerics of some generalized models of lattice dynamics (higher-order nonlinear and triple interactions) (J.L. Wegner; F. Norwood, eds.), Nonlinear Waves in Solids, AMS, vol. 137, ASME, New York, 1995, pp. 374-379
[25] Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Phys. Rev. E, Volume 54 (1996), pp. 3621-3638
[26] Who cares about integrability?, Physica D, Volume 51 (1991), pp. 343-359
[27] Long-time evolution of acoustic signals in nonlinear crystals (H. Hobaeck, ed.), Advances in Nonlinear Acoustics, World Scientific, Singapore, 1993, pp. 457-462
[28] Soliton complex dynamics in strongly dispersive systems, Wave Motion, Volume 34 (2001), pp. 1-26
[29] Existence of solitary waves in martensitic alloys, Int. J. Engrg. Sci., Volume 29 (1991), pp. 243-258
[30] Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, Volume 13 (1972), pp. 260-264
[31] Novel numerical approach to solitary-wave solutions identification of Boussinesq and Korteweg–de Vries equation, Int. J. Bifurcation Chaos, Volume 15 (2005), pp. 557-565
[32] New directions in solitons and periodic waves: polycnoidal waves, imbricated solitons, weakly nonlocal solitary waves, and numerical boundary value algorithms (C.S. Yih, ed.), Advances in Applied Mechanics, vol. 27, Academic Press, New York, 1990, pp. 1-82
[33] On some generalizations of Boussinesq and KdV systems, Proc. Est. Acad. Sci. A, Volume 44 (1995), pp. 40-55 (special issue on the KdV equation)
[34] Dissipative solitons, Physica D, Volume 86 (1995), pp. 323-347
[35] Solitons and dissipation (M.G. Velarde; C.I. Christov, eds.), Fluid Physics, World Scientific, Singapore, 1995, pp. 472-506
[36] Travelling wave solutions for nonlinear waves with dissipation, Appl. Anal., Volume 57 (1995), pp. 85-100
[37] Dispersive-dissipative solitons in nonlinear solids, Wave Motion, Volume 31 (2000) no. 3, pp. 197-207
[38] Dissipative nonlinear strain waves in solids (C.I. Christov; A. Guran, eds.), Selected Topics in Nonlinear Wave Mechanics, Birkhäuser, Boston, 2002, pp. 223-260
[39] Strain kinks in an elastic rod embedded in a viscoelastic medium, Wave Motion, Volume 35 (2001), pp. 189-204
[40] On localized solutions of an equation governing Bénard–Marangoni convection, Appl. Math. Modelling, Volume 17 (1993), pp. 311-320
[41] Evolution and interactions of solitary waves (solitons) in nonlinear dissipative systems, Physica Scripta, Volume T55 (1994), pp. 101-106
[42] Dissipative quasi-particles: The generalized wave equation approach, Int. J. Bifurcation Chaos, Volume 12 (2002), pp. 2435-2444
[43] Amplification of Nonlinear Strain Waves in Solids, World Scientific, Singapore, 2003
[44] Localization of two-dimensional non-linear strain waves in a plate, Int. J. Non-Linear Mech., Volume 39 (2004), pp. 1359-1370
[45] Selection of two-dimensional nonlinear strain waves in microstructure media, C. R. Mécanique (Acad. Sci. Paris), Volume 332 (2004), pp. 513-518
[46] Weak nonlinear dispersive waves: a discussion centered around the Korteweg–de Vries equation, SIAM Rev., Volume 14 (1972), pp. 582-643
[47] 2D solitary waves of Boussinesq equation, Natchitoches, Oct. 2004 (APS Conference Proceedings), Volume 755 (2005), pp. 85-90
[48] Fourier–Galerkin method for 2D solitons of Boussinesq equation, Mathematics and Computers in Simulation, Volume 74 (2007), pp. 82-92
[49] Solitonic structures in KdV-based higher order systems, Wave Motion, Volume 34 (2001), pp. 51-61
[50] On some localized waves described by the extended KdV equation, C. R. Mécanique (Acad. Sci. Paris), Volume 333 (2005), pp. 528-533
[51] Kink, breather and asymmetric envelope or dark solitons in nonlinear chains-I-monoatomic chain, J. Phys. C Solid State Phys., Volume 18 (1986), pp. 4603-4629
[52] Linear and Nonlinear Waves, Wiley–Interscience, New York, 1974
[53] Nonlinear kinematic-wave mechanics of elastic solids, Wave Motion, Volume 44 (2007), pp. 472-481
[54] Nonlinear waves in elastic media, Physica D, Volume 6 (1982), pp. 95-105
[55] Theory of nonlinear surface waves and solitons (C.G. Lai; K. Wilmanski, eds.), Surface Waves in Geomechanics, Springer, Wien, 2005, pp. 325-371
[56] Application of an energy-momentum tensor in nonlinear elastodynamics: pseudomomentum and Eshelby stress in solitonic elastic systems, J. Mech. Phys. Solids, Volume 29 (1992), pp. 1543-1558
[57] Dynamics of solitons in nearly integrable systems, Rev. Modern Phys., Volume 61 (1989), pp. 763-915
[58] Nonlinear duality between elastic waves and quasi-particles in microstructured solids, Tallinn, 1996 (Proc. Est. Acad. Sci. A), Volume 46 (1997), pp. 78-84
[59] Invariant relations in Boussinesq type equations, Chaos Solitons Fractals (J. Phys. UK), Volume 22 (2004) no. 3, pp. 613-625
[60] A complete orthonormal sequence of functions in
[61] V. Varlamov, Two-dimensional Boussinesq equation in a disc and anisotropic Sobolev spaces, C. R. Mecanique (2007), this issue; | DOI
- When discrete fronts and pulses form a single family: FPU chain with hardening-softening springs, Physica D, Volume 464 (2024), p. 15 (Id/No 134187) | DOI:10.1016/j.physd.2024.134187 | Zbl:1546.35183
- Nonlinear wave propagation in homogenized strain gradient 1D and 2D lattice materials: applications to hexagonal and triangular networks, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 104 (2024) no. 8, p. 22 (Id/No e202400426) | DOI:10.1002/zamm.202400426 | Zbl:7955986
- Nonlinear wave propagation analysis in architected materials with consideration of extension, shear and bending effects, Mechanics Research Communications, Volume 128 (2023), p. 104044 | DOI:10.1016/j.mechrescom.2023.104044
- Mechanical waves in myelinated axons, Biomechanics and Modeling in Mechanobiology, Volume 21 (2022) no. 4, p. 1285 | DOI:10.1007/s10237-022-01591-4
- Transition fronts and their universality classes, Physical Review E, Volume 106 (2022) no. 2 | DOI:10.1103/physreve.106.024210
- Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity, Communications on Pure and Applied Analysis, Volume 20 (2021) no. 4, pp. 1601-1631 | DOI:10.3934/cpaa.2021034 | Zbl:1466.35049
- Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source, Discrete and Continuous Dynamical Systems. Series S, Volume 14 (2021) no. 12, pp. 4321-4335 | DOI:10.3934/dcdss.2021108 | Zbl:1480.35062
- Well-posedness of solutions for the sixth-order Boussinesq equation with linear strong damping and nonlinear source, Journal of Nonlinear Science, Volume 31 (2021) no. 5, p. 61 (Id/No 76) | DOI:10.1007/s00332-021-09730-4 | Zbl:1471.35004
- An Ensemble of Waves, Modelling of Complex Signals in Nerves (2021), p. 111 | DOI:10.1007/978-3-030-75039-8_8
- Waves, Modelling of Complex Signals in Nerves (2021), p. 21 | DOI:10.1007/978-3-030-75039-8_3
- Mathematics of Single Effects, Modelling of Complex Signals in Nerves (2021), p. 65 | DOI:10.1007/978-3-030-75039-8_6
- Continuum mechanics and signals in nerves, Proceedings of the Estonian Academy of Sciences, Volume 70 (2021) no. 1, pp. 3-18 | DOI:10.3176/proc.2021.1.02 | Zbl:1478.92037
- Symmetry analysis and conservation laws of a family of Boussinesq equations, Symmetries and applications of differential equations. In memory of Nail H. Ibragimov (1939–2018), Beijing: Higher Education Press; Singapore: Springer, 2021, pp. 153-171 | DOI:10.1007/978-981-16-4683-6_5 | Zbl:1503.35011
- Blow-up in damped abstract nonlinear equations, Electronic Research Archive, Volume 28 (2020) no. 1, pp. 347-367 | DOI:10.3934/era.2020020 | Zbl:1447.35224
- Optimal decay rates and small global solutions to the dissipative Boussinesq equation, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 1, pp. 174-198 | DOI:10.1002/mma.5843 | Zbl:1446.35141
- Dynamics of modified improved Boussinesq equation via Galerkin finite element method, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 17, pp. 10204-10220 | DOI:10.1002/mma.6687 | Zbl:1457.65117
- Blow-up of solutions with high energies of a coupled system of hyperbolic equations, Abstract and Applied Analysis, Volume 2019 (2019), p. 11 (Id/No 7405725) | DOI:10.1155/2019/7405725 | Zbl:1474.35460
- Mathematics of nerve signals, Applied wave mathematics II. Selected topics in solids, fluids, and mathematical methods and complexity, Cham: Springer, 2019, pp. 207-238 | DOI:10.1007/978-3-030-29951-4_10 | Zbl:1444.92014
- Solving nonlinear parabolic equations by a strongly implicit finite difference scheme. Applications to the finite speed spreading of non-Newtonian viscous gravity currents, Applied wave mathematics II. Selected topics in solids, fluids, and mathematical methods and complexity, Cham: Springer, 2019, pp. 305-342 | DOI:10.1007/978-3-030-29951-4_14 | Zbl:1443.76162
- Blowup and decay behavior of solutions to the generalized Boussinesq-type equation with strong damping, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 8, pp. 2854-2876 | DOI:10.1002/mma.5556 | Zbl:1418.35045
- Propagation of elastic solitons in chains of pre-deformed beams, New Journal of Physics, Volume 21 (2019) no. 7, p. 073008 | DOI:10.1088/1367-2630/ab2810
- The Cauchy problem for the dissipative Boussinesq equation, Nonlinear Analysis. Real World Applications, Volume 45 (2019), pp. 116-141 | DOI:10.1016/j.nonrwa.2018.06.012 | Zbl:1409.35057
- On solutions of a Boussinesq-type equation with displacement-dependent nonlinearity: a soliton doublet, Wave Motion, Volume 85 (2019), pp. 10-17 | DOI:10.1016/j.wavemoti.2018.11.001 | Zbl:1524.35549
- On Nonlinear Waves in Media with Complex Properties, Generalized Models and Non-classical Approaches in Complex Materials 1, Volume 89 (2018), p. 275 | DOI:10.1007/978-3-319-72440-9_13
- Soliton trains in dispersive media, Low Temperature Physics, Volume 44 (2018) no. 7, p. 696 | DOI:10.1063/1.5041436
- Solitons modelled by Boussinesq-type equations, Mechanics Research Communications, Volume 93 (2018), p. 62 | DOI:10.1016/j.mechrescom.2017.05.008
- Lie Symmetry Reductions and Exact Solutions of a Multidimensional Double Dispersion Equation, Applied Mathematics, Volume 08 (2017) no. 05, p. 712 | DOI:10.4236/am.2017.85056
- Wave Propagation Analysis in 2D Nonlinear Periodic Structures Prone to Mechanical Instabilities, From Microstructure Investigations to Multiscale Modeling (2017), p. 67 | DOI:10.1002/9781119476757.ch3
- Influence of Nonlinearity, Internal Variables in Thermoelasticity, Volume 243 (2017), p. 113 | DOI:10.1007/978-3-319-56934-5_8
- Global existence and asymptotic behavior of solutions for the Cauchy problem of a dissipative Boussinesq-type equation, Mathematical Modelling and Analysis, Volume 22 (2017) no. 4, pp. 441-463 | DOI:10.3846/13926292.2017.1319882 | Zbl:1488.35480
- On solutions of a Boussinesq-type equation with displacement-dependent nonlinearities: the case of biomembranes, Philosophical Magazine, Volume 97 (2017) no. 12, p. 967 | DOI:10.1080/14786435.2017.1283070
- Higher order dispersive effects in regularized Boussinesq equation, Wave Motion, Volume 68 (2017), pp. 272-282 | DOI:10.1016/j.wavemoti.2016.10.005 | Zbl:1524.76092
- On the role of nonlinearities in the Boussinesq-type wave equations, Wave Motion, Volume 71 (2017), pp. 113-119 | DOI:10.1016/j.wavemoti.2016.04.003 | Zbl:1461.92009
- Nonlinear dynamical analysis of 3D textiles based on second order gradient homogenized media, Composite Structures, Volume 154 (2016), p. 538 | DOI:10.1016/j.compstruct.2016.07.053
- Wave propagation analysis in 2D nonlinear hexagonal periodic networks based on second order gradient nonlinear constitutive models, International Journal of Non-Linear Mechanics, Volume 87 (2016), p. 85 | DOI:10.1016/j.ijnonlinmec.2016.10.002
- On the pseudolocalized solutions in multi-dimension of Boussinesq equation, Mathematics and Computers in Simulation, Volume 127 (2016), pp. 19-27 | DOI:10.1016/j.matcom.2012.06.015 | Zbl:1520.35105
- Global existence and nonexistence of the initial-boundary value problem for the dissipative Boussinesq equation, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 134 (2016), pp. 164-188 | DOI:10.1016/j.na.2016.01.004 | Zbl:1334.35257
- Global existence and long-time behavior of the initial-boundary value problem for the dissipative Boussinesq equation, Nonlinear Analysis. Real World Applications, Volume 31 (2016), pp. 552-568 | DOI:10.1016/j.nonrwa.2016.03.002 | Zbl:1338.35065
- On mathematical modelling of solitary pulses in cylindrical biomembranes, Biomechanics and Modeling in Mechanobiology, Volume 14 (2015) no. 1, p. 159 | DOI:10.1007/s10237-014-0596-2
- On solitary waves in case of amplitude-dependent nonlinearity, Chaos, Solitons and Fractals, Volume 73 (2015), pp. 108-114 | DOI:10.1016/j.chaos.2015.01.013 | Zbl:1352.35209
- Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 1, pp. 117-137 | DOI:10.3934/dcds.2015.35.117 | Zbl:1304.35136
- Reflections on mathematical models of deformation waves in elastic microstructured solids, Mathematics and Mechanics of Complex Systems, Volume 3 (2015) no. 1, p. 43 | DOI:10.2140/memocs.2015.3.43
- What is complexity of waves?, Questions About Elastic Waves (2015), p. 175 | DOI:10.1007/978-3-319-14791-8_8
- What are evolution equations?, Questions About Elastic Waves (2015), p. 71 | DOI:10.1007/978-3-319-14791-8_5
- What physical effects are involved?, Questions About Elastic Waves (2015), p. 91 | DOI:10.1007/978-3-319-14791-8_6
- On solitons in media modelled by the hierarchical KdV equation, Archive of Applied Mechanics, Volume 84 (2014) no. 9-11, pp. 1583-1593 | DOI:10.1007/s00419-014-0861-y | Zbl:1341.35145
- Scaling and hierarchies of wave motion in solids, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 94 (2014) no. 9, pp. 775-783 | DOI:10.1002/zamm.201300042 | Zbl:1298.74125
- Dispersive waves in microstructured solids, International Journal of Solids and Structures, Volume 50 (2013) no. 11-12, p. 1981 | DOI:10.1016/j.ijsolstr.2013.02.018
- Well-posedness for the Cauchy problem associated to a periodic Boussinesq equation, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 89 (2013), pp. 267-275 | DOI:10.1016/j.na.2013.04.011 | Zbl:1284.35353
- Dynamic homogenization and wave propagation in a nonlinear 1D composite material, Wave Motion, Volume 50 (2013) no. 2, p. 271 | DOI:10.1016/j.wavemoti.2012.08.013
- On the influence of material properties on the wave propagation in Mindlin-type microstructured solids, Wave Motion, Volume 50 (2013) no. 7, pp. 1127-1139 | DOI:10.1016/j.wavemoti.2013.05.004 | Zbl:1454.74097
- Phragmén-Lindelöf alternative of exponential type for the solutions of a fourth order dispersive equation, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 23 (2012) no. 2, pp. 105-113 | DOI:10.4171/rlm/620 | Zbl:1245.35127
- Nonlinear strain wave localization in periodic composites, International Journal of Solids and Structures, Volume 49 (2012) no. 23-24, p. 3381 | DOI:10.1016/j.ijsolstr.2012.07.008
- Stability of solitary waves for the generalized higher-order Boussinesq equation, Journal of Dynamics and Differential Equations, Volume 24 (2012) no. 2, pp. 391-425 | DOI:10.1007/s10884-012-9250-9 | Zbl:1260.35180
- Numerical implementation of the asymptotic boundary conditions for steadily propagating 2D solitons of Boussinesq type equations, Mathematics and Computers in Simulation, Volume 82 (2012) no. 6, pp. 1079-1092 | DOI:10.1016/j.matcom.2010.07.030 | Zbl:1320.76031
- On the propagation of 1D solitary waves in Mindlin-type microstructured solids, Mathematics and Computers in Simulation, Volume 82 (2012) no. 7, pp. 1308-1320 | DOI:10.1016/j.matcom.2010.06.022 | Zbl:1348.74181
- Perturbation solution for the 2D Boussinesq equation, Mechanics Research Communications, Volume 38 (2011) no. 3, pp. 274-281 | DOI:10.1016/j.mechrescom.2011.01.014 | Zbl:1272.76182
- Solitons in elastic solids (1938–2010), Mechanics Research Communications, Volume 38 (2011) no. 5, pp. 341-349 | DOI:10.1016/j.mechrescom.2011.04.009 | Zbl:1272.74364
- Dispersive Wave Equations for Solids with Microstructure, Vibration Problems ICOVP 2011, Volume 139 (2011), p. 699 | DOI:10.1007/978-94-007-2069-5_94
- Waves in microstructured solids and the Boussinesq paradigm, Wave Motion, Volume 48 (2011) no. 8, pp. 717-726 | DOI:10.1016/j.wavemoti.2011.04.001 | Zbl:1365.74139
- Generalized continuum mechanics: what do we mean by that?, Mechanics of generalized continua. One hundred years after the Cosserats. Papers based on the presentations at the EUROMECH colloquium 510, Paris, France, May 13–16, 2009., New York, NY: Springer, 2010, pp. 3-13 | DOI:10.1007/978-1-4419-5695-8_1 | Zbl:1396.74023
- The concept of a quasi-particle and the non-probabilistic interpretation of wave mechanics, Mathematics and Computers in Simulation, Volume 80 (2009) no. 1, pp. 91-101 | DOI:10.1016/j.matcom.2009.06.015 | Zbl:1406.74362
Cité par 62 documents. Sources : Crossref, zbMATH
Commentaires - Politique