[Sur la paradigme de Boussinesq pour la propagation d'ondes non linéaires]
L'obtention originale de sa célèbre équation gouvernant les ondes de surface sur une couche fluide par Boussinesq a ouvert de nouveaux horizons qui devaient conduire au concept de soliton. La présente contribution concerne l'ensemble des équations du type Boussinesq sous le titre général de « paradigme de Boussinesq ». Celles-ci sont de véritables équations bi-directionnelles qui apparaissent dans de nombreuses situations physiques et partagent des propriétés analogues. L'accent est mis sur : (i) les système généralisés de Boussinesq qui impliquent une dispersion linéaire d'ordre supérieur soit en raison de la présence de dérivées spatiales d'ordre supérieur, soit avec la contribution d'autres opérateurs d'onde (équation à « double dispersion ») ; et (ii) la « mécanique » des solutions les plus représentatives d'ondes non linéaires localisées qui en résulte. Des généralisations dissipatives et à deux dimensions d'espace sont également envisagées.
Boussinesq's original derivation of his celebrated equation for surface waves on a fluid layer opened up new horizons that were to yield the concept of the soliton. The present contribution concerns the set of Boussinesq-like equations under the general title of ‘Boussinesq's paradigm’. These are true bi-directional wave equations occurring in many physical instances and sharing analogous properties. The emphasis is placed: (i) on generalized Boussinesq systems that involve higher-order linear dispersion through either additional space derivatives or additional wave operators (so-called double-dispersion equations); and (ii) on the ‘mechanics’ of the most representative localized nonlinear wave solutions. Dissipative cases and two-dimensional generalizations are also considered.
Accepté le :
Publié le :
Mot clés : Mécanique des fluides numérique, Boussinesq, Ondes non linéaires, Solides élastiques, Réseau cristallin, Solitons, Équation de Korteweg–de Vries
Christo I. Christov 1 ; Gérard A. Maugin 2 ; Alexey V. Porubov 3
@article{CRMECA_2007__335_9-10_521_0, author = {Christo I. Christov and G\'erard A. Maugin and Alexey V. Porubov}, title = {On {Boussinesq's} paradigm in nonlinear wave propagation}, journal = {Comptes Rendus. M\'ecanique}, pages = {521--535}, publisher = {Elsevier}, volume = {335}, number = {9-10}, year = {2007}, doi = {10.1016/j.crme.2007.08.006}, language = {en}, }
TY - JOUR AU - Christo I. Christov AU - Gérard A. Maugin AU - Alexey V. Porubov TI - On Boussinesq's paradigm in nonlinear wave propagation JO - Comptes Rendus. Mécanique PY - 2007 SP - 521 EP - 535 VL - 335 IS - 9-10 PB - Elsevier DO - 10.1016/j.crme.2007.08.006 LA - en ID - CRMECA_2007__335_9-10_521_0 ER -
Christo I. Christov; Gérard A. Maugin; Alexey V. Porubov. On Boussinesq's paradigm in nonlinear wave propagation. Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 521-535. doi : 10.1016/j.crme.2007.08.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.08.006/
[1] Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, Volume 72 (1871), pp. 755-759
[2] Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., Volume 17 (1872), pp. 55-108
[3] On waves, Phil. Mag. (5), Volume 1 (1876), pp. 257-279
[4] On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. (5), Volume 39 (1895), pp. 422-443
[5] The long-wave paradox in the theory of gravity waves, Proc. Cambr. Phil. Soc., Volume 49 (1953), pp. 685-694
[6] Conservative difference scheme for Boussinesq model of surface waves (K. Morton; J. Baines, eds.), Proceedings ICFD 5, Oxford University Press, Oxford, 1996, pp. 343-349
[7] An energy-consistent Galilean-invariant dispersive shallow-water model, Wave Motion, Volume 34 (2001), pp. 161-174
[8] Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985
[9] Dynamics of nonlinear mass-spring chains near the continuum limit, Phys. Lett., Volume 118A (1987), pp. 222-227
[10] Model equation for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc. London A, Volume 272 (1972), pp. 47-78
[11] Nonlinear waves in rods, J. Appl. Math. Mech., Volume 41 (1977), pp. 543-549 (English translation of P.M.M.)
[12] Solitary wave interactions in elastic rods, Stud. Appl. Math., Volume 75 (1986), pp. 95-122
[13] Théorie nouvelle des ondes lumineuses, J. Math. Pures Appl., Série 2, Volume 13 (1870), pp. 313-339
[14] Nonlinear Waves in Elastic Crystals, Oxford Univ. Press, Oxford, UK, 1999
[15] Nonlinear longitudinal dispersive waves in elastic rods, J. Math. Phys. Sci., Volume 4 (1970), pp. 64-73
[16] Modulated Waves—Theory and applications, The Johns Hopkins Univ. Press, Baltimore, 1999
[17] Strain Solitons in Solids and How to Construct Them, Chapman and Hall/CRC, Boca Raton, 2001
[18] Nonlinear duality between elastic waves and quasi-particles (C.I. Christov; A. Guran, eds.), Selected Topics in Nonlinear Wave Mechanics, Birkhäuser, Boston, 2002, pp. 117-160
[19] Numerical investigation of the long-time evolution and interaction of localized waves (M.G. Velarde; C.I. Christov, eds.), Fluid Physics, World Scientific, Singapore, 1995, pp. 353-378
[20] Inelastic collisions of Boussinesq solitons, Int. J. Bifurcation Chaos, Volume 5 (1994), pp. 1095-1112
[21] Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981
[22] A numerical venture into the menagerie of coherent structures of generalized Boussinesq systems (M. Remoissenet; M. Peyrard, eds.), Coherent Structures in Physics and Biology, Springer, Berlin, 1991, pp. 206-215
[23] An implicit difference scheme for the long-time evolution of localized solutions of a generalized Boussinesq system, J. Comput. Phys., Volume 116 (1995), pp. 39-51
[24] Numerics of some generalized models of lattice dynamics (higher-order nonlinear and triple interactions) (J.L. Wegner; F. Norwood, eds.), Nonlinear Waves in Solids, AMS, vol. 137, ASME, New York, 1995, pp. 374-379
[25] Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Phys. Rev. E, Volume 54 (1996), pp. 3621-3638
[26] Who cares about integrability?, Physica D, Volume 51 (1991), pp. 343-359
[27] Long-time evolution of acoustic signals in nonlinear crystals (H. Hobaeck, ed.), Advances in Nonlinear Acoustics, World Scientific, Singapore, 1993, pp. 457-462
[28] Soliton complex dynamics in strongly dispersive systems, Wave Motion, Volume 34 (2001), pp. 1-26
[29] Existence of solitary waves in martensitic alloys, Int. J. Engrg. Sci., Volume 29 (1991), pp. 243-258
[30] Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, Volume 13 (1972), pp. 260-264
[31] Novel numerical approach to solitary-wave solutions identification of Boussinesq and Korteweg–de Vries equation, Int. J. Bifurcation Chaos, Volume 15 (2005), pp. 557-565
[32] New directions in solitons and periodic waves: polycnoidal waves, imbricated solitons, weakly nonlocal solitary waves, and numerical boundary value algorithms (C.S. Yih, ed.), Advances in Applied Mechanics, vol. 27, Academic Press, New York, 1990, pp. 1-82
[33] On some generalizations of Boussinesq and KdV systems, Proc. Est. Acad. Sci. A, Volume 44 (1995), pp. 40-55 (special issue on the KdV equation)
[34] Dissipative solitons, Physica D, Volume 86 (1995), pp. 323-347
[35] Solitons and dissipation (M.G. Velarde; C.I. Christov, eds.), Fluid Physics, World Scientific, Singapore, 1995, pp. 472-506
[36] Travelling wave solutions for nonlinear waves with dissipation, Appl. Anal., Volume 57 (1995), pp. 85-100
[37] Dispersive-dissipative solitons in nonlinear solids, Wave Motion, Volume 31 (2000) no. 3, pp. 197-207
[38] Dissipative nonlinear strain waves in solids (C.I. Christov; A. Guran, eds.), Selected Topics in Nonlinear Wave Mechanics, Birkhäuser, Boston, 2002, pp. 223-260
[39] Strain kinks in an elastic rod embedded in a viscoelastic medium, Wave Motion, Volume 35 (2001), pp. 189-204
[40] On localized solutions of an equation governing Bénard–Marangoni convection, Appl. Math. Modelling, Volume 17 (1993), pp. 311-320
[41] Evolution and interactions of solitary waves (solitons) in nonlinear dissipative systems, Physica Scripta, Volume T55 (1994), pp. 101-106
[42] Dissipative quasi-particles: The generalized wave equation approach, Int. J. Bifurcation Chaos, Volume 12 (2002), pp. 2435-2444
[43] Amplification of Nonlinear Strain Waves in Solids, World Scientific, Singapore, 2003
[44] Localization of two-dimensional non-linear strain waves in a plate, Int. J. Non-Linear Mech., Volume 39 (2004), pp. 1359-1370
[45] Selection of two-dimensional nonlinear strain waves in microstructure media, C. R. Mécanique (Acad. Sci. Paris), Volume 332 (2004), pp. 513-518
[46] Weak nonlinear dispersive waves: a discussion centered around the Korteweg–de Vries equation, SIAM Rev., Volume 14 (1972), pp. 582-643
[47] 2D solitary waves of Boussinesq equation, Natchitoches, Oct. 2004 (APS Conference Proceedings), Volume 755 (2005), pp. 85-90
[48] Fourier–Galerkin method for 2D solitons of Boussinesq equation, Mathematics and Computers in Simulation, Volume 74 (2007), pp. 82-92
[49] Solitonic structures in KdV-based higher order systems, Wave Motion, Volume 34 (2001), pp. 51-61
[50] On some localized waves described by the extended KdV equation, C. R. Mécanique (Acad. Sci. Paris), Volume 333 (2005), pp. 528-533
[51] Kink, breather and asymmetric envelope or dark solitons in nonlinear chains-I-monoatomic chain, J. Phys. C Solid State Phys., Volume 18 (1986), pp. 4603-4629
[52] Linear and Nonlinear Waves, Wiley–Interscience, New York, 1974
[53] Nonlinear kinematic-wave mechanics of elastic solids, Wave Motion, Volume 44 (2007), pp. 472-481
[54] Nonlinear waves in elastic media, Physica D, Volume 6 (1982), pp. 95-105
[55] Theory of nonlinear surface waves and solitons (C.G. Lai; K. Wilmanski, eds.), Surface Waves in Geomechanics, Springer, Wien, 2005, pp. 325-371
[56] Application of an energy-momentum tensor in nonlinear elastodynamics: pseudomomentum and Eshelby stress in solitonic elastic systems, J. Mech. Phys. Solids, Volume 29 (1992), pp. 1543-1558
[57] Dynamics of solitons in nearly integrable systems, Rev. Modern Phys., Volume 61 (1989), pp. 763-915
[58] Nonlinear duality between elastic waves and quasi-particles in microstructured solids, Tallinn, 1996 (Proc. Est. Acad. Sci. A), Volume 46 (1997), pp. 78-84
[59] Invariant relations in Boussinesq type equations, Chaos Solitons Fractals (J. Phys. UK), Volume 22 (2004) no. 3, pp. 613-625
[60] A complete orthonormal sequence of functions in space, SIAM J. Appl. Math., Volume 42 (1982), pp. 1337-1344
[61] V. Varlamov, Two-dimensional Boussinesq equation in a disc and anisotropic Sobolev spaces, C. R. Mecanique (2007), this issue; | DOI
Cité par Sources :
Commentaires - Politique