Comptes Rendus
Boussinesq equation, elasticity, beams, plates
On Boussinesq's paradigm in nonlinear wave propagation
[Sur la paradigme de Boussinesq pour la propagation d'ondes non linéaires]
Comptes Rendus. Mécanique, Joseph Boussinesq, a Scientist of bygone days and present times, Volume 335 (2007) no. 9-10, pp. 521-535.

L'obtention originale de sa célèbre équation gouvernant les ondes de surface sur une couche fluide par Boussinesq a ouvert de nouveaux horizons qui devaient conduire au concept de soliton. La présente contribution concerne l'ensemble des équations du type Boussinesq sous le titre général de « paradigme de Boussinesq ». Celles-ci sont de véritables équations bi-directionnelles qui apparaissent dans de nombreuses situations physiques et partagent des propriétés analogues. L'accent est mis sur : (i) les système généralisés de Boussinesq qui impliquent une dispersion linéaire d'ordre supérieur soit en raison de la présence de dérivées spatiales d'ordre supérieur, soit avec la contribution d'autres opérateurs d'onde (équation à « double dispersion ») ; et (ii) la « mécanique » des solutions les plus représentatives d'ondes non linéaires localisées qui en résulte. Des généralisations dissipatives et à deux dimensions d'espace sont également envisagées.

Boussinesq's original derivation of his celebrated equation for surface waves on a fluid layer opened up new horizons that were to yield the concept of the soliton. The present contribution concerns the set of Boussinesq-like equations under the general title of ‘Boussinesq's paradigm’. These are true bi-directional wave equations occurring in many physical instances and sharing analogous properties. The emphasis is placed: (i) on generalized Boussinesq systems that involve higher-order linear dispersion through either additional space derivatives or additional wave operators (so-called double-dispersion equations); and (ii) on the ‘mechanics’ of the most representative localized nonlinear wave solutions. Dissipative cases and two-dimensional generalizations are also considered.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2007.08.006
Keywords: Computational fluid mechanics, Boussinesq, Nonlinear wave, Elastic solids, Crystal lattice, Solitons, Korteweg–de Vries equation
Mots-clés : Mécanique des fluides numérique, Boussinesq, Ondes non linéaires, Solides élastiques, Réseau cristallin, Solitons, Équation de Korteweg–de Vries

Christo I. Christov 1 ; Gérard A. Maugin 2 ; Alexey V. Porubov 3

1 Department of Mathematics, University of Louisiana at Lafayette, P.O. Box 1010, Lafayette, LA 70504-1010, USA
2 Université Pierre et Marie Curie, Institut Jean le Rond d'Alembert, UMR 7190, case 162, 4, place Jussieu, 75252 Paris cedex 05, France
3 Institute for Problems in Mechanical Engineering, R.A.S., V.O., Bolshoy avenue 61, Saint-Petersburg 199178, Russia
@article{CRMECA_2007__335_9-10_521_0,
     author = {Christo I. Christov and G\'erard A. Maugin and Alexey V. Porubov},
     title = {On {Boussinesq's} paradigm in nonlinear wave propagation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {521--535},
     publisher = {Elsevier},
     volume = {335},
     number = {9-10},
     year = {2007},
     doi = {10.1016/j.crme.2007.08.006},
     language = {en},
}
TY  - JOUR
AU  - Christo I. Christov
AU  - Gérard A. Maugin
AU  - Alexey V. Porubov
TI  - On Boussinesq's paradigm in nonlinear wave propagation
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 521
EP  - 535
VL  - 335
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crme.2007.08.006
LA  - en
ID  - CRMECA_2007__335_9-10_521_0
ER  - 
%0 Journal Article
%A Christo I. Christov
%A Gérard A. Maugin
%A Alexey V. Porubov
%T On Boussinesq's paradigm in nonlinear wave propagation
%J Comptes Rendus. Mécanique
%D 2007
%P 521-535
%V 335
%N 9-10
%I Elsevier
%R 10.1016/j.crme.2007.08.006
%G en
%F CRMECA_2007__335_9-10_521_0
Christo I. Christov; Gérard A. Maugin; Alexey V. Porubov. On Boussinesq's paradigm in nonlinear wave propagation. Comptes Rendus. Mécanique, Joseph Boussinesq, a Scientist of bygone days and present times, Volume 335 (2007) no. 9-10, pp. 521-535. doi : 10.1016/j.crme.2007.08.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.08.006/

[1] J.V. Boussinesq Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, Volume 72 (1871), pp. 755-759

[2] J.V. Boussinesq Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., Volume 17 (1872), pp. 55-108

[3] Lord Rayleigh On waves, Phil. Mag. (5), Volume 1 (1876), pp. 257-279

[4] D.J. Korteweg; G. de Vries On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. (5), Volume 39 (1895), pp. 422-443

[5] F. Ursell The long-wave paradox in the theory of gravity waves, Proc. Cambr. Phil. Soc., Volume 49 (1953), pp. 685-694

[6] C.I. Christov Conservative difference scheme for Boussinesq model of surface waves (K. Morton; J. Baines, eds.), Proceedings ICFD 5, Oxford University Press, Oxford, 1996, pp. 343-349

[7] C.I. Christov An energy-consistent Galilean-invariant dispersive shallow-water model, Wave Motion, Volume 34 (2001), pp. 161-174

[8] A.C. Newell Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985

[9] Ph. Rosenau Dynamics of nonlinear mass-spring chains near the continuum limit, Phys. Lett., Volume 118A (1987), pp. 222-227

[10] T.B. Benjamin; J.L. Bona; J.J. Mahony Model equation for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc. London A, Volume 272 (1972), pp. 47-78

[11] L.A. Ostrovskii; A.M. Sutin Nonlinear waves in rods, J. Appl. Math. Mech., Volume 41 (1977), pp. 543-549 (English translation of P.M.M.)

[12] P.A. Clarkson; R.J. LeVeque; R. Saxton Solitary wave interactions in elastic rods, Stud. Appl. Math., Volume 75 (1986), pp. 95-122

[13] J.V. Boussinesq Théorie nouvelle des ondes lumineuses, J. Math. Pures Appl., Série 2, Volume 13 (1870), pp. 313-339

[14] G.A. Maugin Nonlinear Waves in Elastic Crystals, Oxford Univ. Press, Oxford, UK, 1999

[15] G.A. Nariboli Nonlinear longitudinal dispersive waves in elastic rods, J. Math. Phys. Sci., Volume 4 (1970), pp. 64-73

[16] L.A. Ostrovsky; A.I. Potapov Modulated Waves—Theory and applications, The Johns Hopkins Univ. Press, Baltimore, 1999

[17] A.M. Samsonov Strain Solitons in Solids and How to Construct Them, Chapman and Hall/CRC, Boca Raton, 2001

[18] G.A. Maugin; C.I. Christov Nonlinear duality between elastic waves and quasi-particles (C.I. Christov; A. Guran, eds.), Selected Topics in Nonlinear Wave Mechanics, Birkhäuser, Boston, 2002, pp. 117-160

[19] C.I. Christov Numerical investigation of the long-time evolution and interaction of localized waves (M.G. Velarde; C.I. Christov, eds.), Fluid Physics, World Scientific, Singapore, 1995, pp. 353-378

[20] C.I. Christov; M.G. Velarde Inelastic collisions of Boussinesq solitons, Int. J. Bifurcation Chaos, Volume 5 (1994), pp. 1095-1112

[21] M.J. Ablowitz; H. Segur Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981

[22] C.I. Christov; G.A. Maugin A numerical venture into the menagerie of coherent structures of generalized Boussinesq systems (M. Remoissenet; M. Peyrard, eds.), Coherent Structures in Physics and Biology, Springer, Berlin, 1991, pp. 206-215

[23] C.I. Christov; G.A. Maugin An implicit difference scheme for the long-time evolution of localized solutions of a generalized Boussinesq system, J. Comput. Phys., Volume 116 (1995), pp. 39-51

[24] C.I. Christov; G.A. Maugin Numerics of some generalized models of lattice dynamics (higher-order nonlinear and triple interactions) (J.L. Wegner; F. Norwood, eds.), Nonlinear Waves in Solids, AMS, vol. 137, ASME, New York, 1995, pp. 374-379

[25] C.I. Christov; G.A. Maugin; M.E. Velarde Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Phys. Rev. E, Volume 54 (1996), pp. 3621-3638

[26] H. Segur Who cares about integrability?, Physica D, Volume 51 (1991), pp. 343-359

[27] C.I. Christov; G.A. Maugin Long-time evolution of acoustic signals in nonlinear crystals (H. Hobaeck, ed.), Advances in Nonlinear Acoustics, World Scientific, Singapore, 1993, pp. 457-462

[28] A.M. Kosevich; M. Bogdan; G.A. Maugin Soliton complex dynamics in strongly dispersive systems, Wave Motion, Volume 34 (2001), pp. 1-26

[29] G.A. Maugin; S. Cadet Existence of solitary waves in martensitic alloys, Int. J. Engrg. Sci., Volume 29 (1991), pp. 243-258

[30] T. Kawahara Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, Volume 13 (1972), pp. 260-264

[31] T.T. Marinov; C.I. Christov; R.S. Marinova Novel numerical approach to solitary-wave solutions identification of Boussinesq and Korteweg–de Vries equation, Int. J. Bifurcation Chaos, Volume 15 (2005), pp. 557-565

[32] J.P. Boyd New directions in solitons and periodic waves: polycnoidal waves, imbricated solitons, weakly nonlocal solitary waves, and numerical boundary value algorithms (C.S. Yih, ed.), Advances in Applied Mechanics, vol. 27, Academic Press, New York, 1990, pp. 1-82

[33] G.A. Maugin On some generalizations of Boussinesq and KdV systems, Proc. Est. Acad. Sci. A, Volume 44 (1995), pp. 40-55 (special issue on the KdV equation)

[34] C.I. Christov; M.G. Velarde Dissipative solitons, Physica D, Volume 86 (1995), pp. 323-347

[35] C.I. Christov; M.G. Velarde Solitons and dissipation (M.G. Velarde; C.I. Christov, eds.), Fluid Physics, World Scientific, Singapore, 1995, pp. 472-506

[36] A.M. Samsonov Travelling wave solutions for nonlinear waves with dissipation, Appl. Anal., Volume 57 (1995), pp. 85-100

[37] A.V. Porubov; M.G. Velarde Dispersive-dissipative solitons in nonlinear solids, Wave Motion, Volume 31 (2000) no. 3, pp. 197-207

[38] A.V. Porubov Dissipative nonlinear strain waves in solids (C.I. Christov; A. Guran, eds.), Selected Topics in Nonlinear Wave Mechanics, Birkhäuser, Boston, 2002, pp. 223-260

[39] A.V. Porubov; M.G. Velarde Strain kinks in an elastic rod embedded in a viscoelastic medium, Wave Motion, Volume 35 (2001), pp. 189-204

[40] C.I. Christov; M.G. Velarde On localized solutions of an equation governing Bénard–Marangoni convection, Appl. Math. Modelling, Volume 17 (1993), pp. 311-320

[41] C.I. Christov; M.G. Velarde Evolution and interactions of solitary waves (solitons) in nonlinear dissipative systems, Physica Scripta, Volume T55 (1994), pp. 101-106

[42] C.I. Christov Dissipative quasi-particles: The generalized wave equation approach, Int. J. Bifurcation Chaos, Volume 12 (2002), pp. 2435-2444

[43] A.V. Porubov Amplification of Nonlinear Strain Waves in Solids, World Scientific, Singapore, 2003

[44] A.V. Porubov; G.A. Maugin; V.V. Mareev Localization of two-dimensional non-linear strain waves in a plate, Int. J. Non-Linear Mech., Volume 39 (2004), pp. 1359-1370

[45] A.V. Porubov; F. Pastrone; G.A. Maugin Selection of two-dimensional nonlinear strain waves in microstructure media, C. R. Mécanique (Acad. Sci. Paris), Volume 332 (2004), pp. 513-518

[46] A. Jeffrey; T. Kakutani Weak nonlinear dispersive waves: a discussion centered around the Korteweg–de Vries equation, SIAM Rev., Volume 14 (1972), pp. 582-643

[47] J. Choudhury; C.I. Christov 2D solitary waves of Boussinesq equation, Natchitoches, Oct. 2004 (APS Conference Proceedings), Volume 755 (2005), pp. 85-90

[48] M.A. Christou; C.I. Christov Fourier–Galerkin method for 2D solitons of Boussinesq equation, Mathematics and Computers in Simulation, Volume 74 (2007), pp. 82-92

[49] A. Salupere; G.A. Maugin; Jü. Engelbrecht Solitonic structures in KdV-based higher order systems, Wave Motion, Volume 34 (2001), pp. 51-61

[50] A.V. Porubov; V.V. Gursky; V.V. Krzhizhanovskaya; G.A. Maugin On some localized waves described by the extended KdV equation, C. R. Mécanique (Acad. Sci. Paris), Volume 333 (2005), pp. 528-533

[51] N. Flytzanis; St. Pnevmatikos; M. Remoissenet Kink, breather and asymmetric envelope or dark solitons in nonlinear chains-I-monoatomic chain, J. Phys. C Solid State Phys., Volume 18 (1986), pp. 4603-4629

[52] G.B. Whitham Linear and Nonlinear Waves, Wiley–Interscience, New York, 1974

[53] G.A. Maugin Nonlinear kinematic-wave mechanics of elastic solids, Wave Motion, Volume 44 (2007), pp. 472-481

[54] K. Bataille; F. Lund Nonlinear waves in elastic media, Physica D, Volume 6 (1982), pp. 95-105

[55] G.A. Maugin Theory of nonlinear surface waves and solitons (C.G. Lai; K. Wilmanski, eds.), Surface Waves in Geomechanics, Springer, Wien, 2005, pp. 325-371

[56] G.A. Maugin Application of an energy-momentum tensor in nonlinear elastodynamics: pseudomomentum and Eshelby stress in solitonic elastic systems, J. Mech. Phys. Solids, Volume 29 (1992), pp. 1543-1558

[57] Yu.S. Kivshar; B.A. Malomed Dynamics of solitons in nearly integrable systems, Rev. Modern Phys., Volume 61 (1989), pp. 763-915

[58] G.A. Maugin; C.I. Christov Nonlinear duality between elastic waves and quasi-particles in microstructured solids, Tallinn, 1996 (Proc. Est. Acad. Sci. A), Volume 46 (1997), pp. 78-84

[59] E. Meletlidou; J. Pouget; G.A. Maugin; E.C. Aifantis Invariant relations in Boussinesq type equations, Chaos Solitons Fractals (J. Phys. UK), Volume 22 (2004) no. 3, pp. 613-625

[60] C.I. Christov A complete orthonormal sequence of functions in L2(,) space, SIAM J. Appl. Math., Volume 42 (1982), pp. 1337-1344

[61] V. Varlamov, Two-dimensional Boussinesq equation in a disc and anisotropic Sobolev spaces, C. R. Mecanique (2007), this issue; | DOI

  • Anna Vainchtein; Lev Truskinovsky When discrete fronts and pulses form a single family: FPU chain with hardening-softening springs, Physica D, Volume 464 (2024), p. 15 (Id/No 134187) | DOI:10.1016/j.physd.2024.134187 | Zbl:1546.35183
  • Abdallah Wazne; Hilal Reda; Jean-François Ganghoffer; Hassan Lakiss Nonlinear wave propagation in homogenized strain gradient 1D and 2D lattice materials: applications to hexagonal and triangular networks, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 104 (2024) no. 8, p. 22 (Id/No e202400426) | DOI:10.1002/zamm.202400426 | Zbl:7955986
  • Abdallah Wazne; Hilal Reda; Jean-François Ganghoffer; Hassan Lakiss Nonlinear wave propagation analysis in architected materials with consideration of extension, shear and bending effects, Mechanics Research Communications, Volume 128 (2023), p. 104044 | DOI:10.1016/j.mechrescom.2023.104044
  • Kert Tamm; Tanel Peets; Jüri Engelbrecht Mechanical waves in myelinated axons, Biomechanics and Modeling in Mechanobiology, Volume 21 (2022) no. 4, p. 1285 | DOI:10.1007/s10237-022-01591-4
  • N. Gorbushin; A. Vainchtein; L. Truskinovsky Transition fronts and their universality classes, Physical Review E, Volume 106 (2022) no. 2 | DOI:10.1103/physreve.106.024210
  • Huan Zhang; Jun Zhou Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity, Communications on Pure and Applied Analysis, Volume 20 (2021) no. 4, pp. 1601-1631 | DOI:10.3934/cpaa.2021034 | Zbl:1466.35049
  • Jinxing Liu; Xiongrui Wang; Jun Zhou; Huan Zhang Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source, Discrete and Continuous Dynamical Systems. Series S, Volume 14 (2021) no. 12, pp. 4321-4335 | DOI:10.3934/dcdss.2021108 | Zbl:1480.35062
  • Jun Zhou; Huan Zhang Well-posedness of solutions for the sixth-order Boussinesq equation with linear strong damping and nonlinear source, Journal of Nonlinear Science, Volume 31 (2021) no. 5, p. 61 (Id/No 76) | DOI:10.1007/s00332-021-09730-4 | Zbl:1471.35004
  • Jüri Engelbrecht; Kert Tamm; Tanel Peets An Ensemble of Waves, Modelling of Complex Signals in Nerves (2021), p. 111 | DOI:10.1007/978-3-030-75039-8_8
  • Jüri Engelbrecht; Kert Tamm; Tanel Peets Waves, Modelling of Complex Signals in Nerves (2021), p. 21 | DOI:10.1007/978-3-030-75039-8_3
  • Jüri Engelbrecht; Kert Tamm; Tanel Peets Mathematics of Single Effects, Modelling of Complex Signals in Nerves (2021), p. 65 | DOI:10.1007/978-3-030-75039-8_6
  • Jüri Engelbrecht; Kert Tamm; Tanel Peets Continuum mechanics and signals in nerves, Proceedings of the Estonian Academy of Sciences, Volume 70 (2021) no. 1, pp. 3-18 | DOI:10.3176/proc.2021.1.02 | Zbl:1478.92037
  • M. S. Bruzón; M. L. Gandarias Symmetry analysis and conservation laws of a family of Boussinesq equations, Symmetries and applications of differential equations. In memory of Nail H. Ibragimov (1939–2018), Beijing: Higher Education Press; Singapore: Springer, 2021, pp. 153-171 | DOI:10.1007/978-981-16-4683-6_5 | Zbl:1503.35011
  • Jorge A. Esquivel-Avila Blow-up in damped abstract nonlinear equations, Electronic Research Archive, Volume 28 (2020) no. 1, pp. 347-367 | DOI:10.3934/era.2020020 | Zbl:1447.35224
  • Xiao Su; Shubin Wang Optimal decay rates and small global solutions to the dissipative Boussinesq equation, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 1, pp. 174-198 | DOI:10.1002/mma.5843 | Zbl:1446.35141
  • Berat Karaagac; Yusuf Ucar; Alaattin Esen Dynamics of modified improved Boussinesq equation via Galerkin finite element method, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 17, pp. 10204-10220 | DOI:10.1002/mma.6687 | Zbl:1457.65117
  • Jorge A. Esquivel-Avila Blow-up of solutions with high energies of a coupled system of hyperbolic equations, Abstract and Applied Analysis, Volume 2019 (2019), p. 11 (Id/No 7405725) | DOI:10.1155/2019/7405725 | Zbl:1474.35460
  • Tanel Peets; Kert Tamm Mathematics of nerve signals, Applied wave mathematics II. Selected topics in solids, fluids, and mathematical methods and complexity, Cham: Springer, 2019, pp. 207-238 | DOI:10.1007/978-3-030-29951-4_10 | Zbl:1444.92014
  • Aditya A. Ghodgaonkar; Ivan C. Christov Solving nonlinear parabolic equations by a strongly implicit finite difference scheme. Applications to the finite speed spreading of non-Newtonian viscous gravity currents, Applied wave mathematics II. Selected topics in solids, fluids, and mathematical methods and complexity, Cham: Springer, 2019, pp. 305-342 | DOI:10.1007/978-3-030-29951-4_14 | Zbl:1443.76162
  • Hamideh B. Mohammadi; Amin Esfahani Blowup and decay behavior of solutions to the generalized Boussinesq-type equation with strong damping, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 8, pp. 2854-2876 | DOI:10.1002/mma.5556 | Zbl:1418.35045
  • Bolei Deng; Yuning Zhang; Qi He; Vincent Tournat; Pai Wang; Katia Bertoldi Propagation of elastic solitons in chains of pre-deformed beams, New Journal of Physics, Volume 21 (2019) no. 7, p. 073008 | DOI:10.1088/1367-2630/ab2810
  • Shubin Wang; Xiao Su The Cauchy problem for the dissipative Boussinesq equation, Nonlinear Analysis. Real World Applications, Volume 45 (2019), pp. 116-141 | DOI:10.1016/j.nonrwa.2018.06.012 | Zbl:1409.35057
  • Tanel Peets; Kert Tamm; Päivo Simson; Jüri Engelbrecht On solutions of a Boussinesq-type equation with displacement-dependent nonlinearity: a soliton doublet, Wave Motion, Volume 85 (2019), pp. 10-17 | DOI:10.1016/j.wavemoti.2018.11.001 | Zbl:1524.35549
  • Jüri Engelbrecht; Andrus Salupere; Arkadi Berezovski; Tanel Peets; Kert Tamm On Nonlinear Waves in Media with Complex Properties, Generalized Models and Non-classical Approaches in Complex Materials 1, Volume 89 (2018), p. 275 | DOI:10.1007/978-3-319-72440-9_13
  • Jüri Engelbrecht; Tanel Peets; Kert Tamm Soliton trains in dispersive media, Low Temperature Physics, Volume 44 (2018) no. 7, p. 696 | DOI:10.1063/1.5041436
  • Jüri Engelbrecht; Tanel Peets; Kert Tamm Solitons modelled by Boussinesq-type equations, Mechanics Research Communications, Volume 93 (2018), p. 62 | DOI:10.1016/j.mechrescom.2017.05.008
  • Jiali Yu; Fuzhi Li; Lianbing She Lie Symmetry Reductions and Exact Solutions of a Multidimensional Double Dispersion Equation, Applied Mathematics, Volume 08 (2017) no. 05, p. 712 | DOI:10.4236/am.2017.85056
  • Hilal Reda; Yosra Rahali; Jean‐François Ganghoffer; Hassan Lakiss Wave Propagation Analysis in 2D Nonlinear Periodic Structures Prone to Mechanical Instabilities, From Microstructure Investigations to Multiscale Modeling (2017), p. 67 | DOI:10.1002/9781119476757.ch3
  • Arkadi Berezovski; Peter Ván Influence of Nonlinearity, Internal Variables in Thermoelasticity, Volume 243 (2017), p. 113 | DOI:10.1007/978-3-319-56934-5_8
  • Amin Esfahani; Hamideh B. Mohammadi Global existence and asymptotic behavior of solutions for the Cauchy problem of a dissipative Boussinesq-type equation, Mathematical Modelling and Analysis, Volume 22 (2017) no. 4, pp. 441-463 | DOI:10.3846/13926292.2017.1319882 | Zbl:1488.35480
  • Jüri Engelbrecht; Kert Tamm; Tanel Peets On solutions of a Boussinesq-type equation with displacement-dependent nonlinearities: the case of biomembranes, Philosophical Magazine, Volume 97 (2017) no. 12, p. 967 | DOI:10.1080/14786435.2017.1283070
  • Goksu Oruc; Handan Borluk; Gulcin M. Muslu Higher order dispersive effects in regularized Boussinesq equation, Wave Motion, Volume 68 (2017), pp. 272-282 | DOI:10.1016/j.wavemoti.2016.10.005 | Zbl:1524.76092
  • Tanel Peets; Kert Tamm; Jüri Engelbrecht On the role of nonlinearities in the Boussinesq-type wave equations, Wave Motion, Volume 71 (2017), pp. 113-119 | DOI:10.1016/j.wavemoti.2016.04.003 | Zbl:1461.92009
  • H. Reda; Y. Rahali; J.F. Ganghoffer; H. Lakiss Nonlinear dynamical analysis of 3D textiles based on second order gradient homogenized media, Composite Structures, Volume 154 (2016), p. 538 | DOI:10.1016/j.compstruct.2016.07.053
  • H. Reda; Y. Rahali; J.F. Ganghoffer; H. Lakiss Wave propagation analysis in 2D nonlinear hexagonal periodic networks based on second order gradient nonlinear constitutive models, International Journal of Non-Linear Mechanics, Volume 87 (2016), p. 85 | DOI:10.1016/j.ijnonlinmec.2016.10.002
  • C. I. Christov On the pseudolocalized solutions in multi-dimension of Boussinesq equation, Mathematics and Computers in Simulation, Volume 127 (2016), pp. 19-27 | DOI:10.1016/j.matcom.2012.06.015 | Zbl:1520.35105
  • Shubin Wang; Xiao Su Global existence and nonexistence of the initial-boundary value problem for the dissipative Boussinesq equation, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 134 (2016), pp. 164-188 | DOI:10.1016/j.na.2016.01.004 | Zbl:1334.35257
  • Shubin Wang; Xiao Su Global existence and long-time behavior of the initial-boundary value problem for the dissipative Boussinesq equation, Nonlinear Analysis. Real World Applications, Volume 31 (2016), pp. 552-568 | DOI:10.1016/j.nonrwa.2016.03.002 | Zbl:1338.35065
  • Jüri Engelbrecht; Kert Tamm; Tanel Peets On mathematical modelling of solitary pulses in cylindrical biomembranes, Biomechanics and Modeling in Mechanobiology, Volume 14 (2015) no. 1, p. 159 | DOI:10.1007/s10237-014-0596-2
  • Kert Tamm; Tanel Peets On solitary waves in case of amplitude-dependent nonlinearity, Chaos, Solitons and Fractals, Volume 73 (2015), pp. 108-114 | DOI:10.1016/j.chaos.2015.01.013 | Zbl:1352.35209
  • Akmel Dé Godefroy Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 1, pp. 117-137 | DOI:10.3934/dcds.2015.35.117 | Zbl:1304.35136
  • Jüri Engelbrecht; Arkadi Berezovski Reflections on mathematical models of deformation waves in elastic microstructured solids, Mathematics and Mechanics of Complex Systems, Volume 3 (2015) no. 1, p. 43 | DOI:10.2140/memocs.2015.3.43
  • Jüri Engelbrecht What is complexity of waves?, Questions About Elastic Waves (2015), p. 175 | DOI:10.1007/978-3-319-14791-8_8
  • Jüri Engelbrecht What are evolution equations?, Questions About Elastic Waves (2015), p. 71 | DOI:10.1007/978-3-319-14791-8_5
  • jüri Engelbrecht What physical effects are involved?, Questions About Elastic Waves (2015), p. 91 | DOI:10.1007/978-3-319-14791-8_6
  • Andrus Salupere; Martin Lints; Jüri Engelbrecht On solitons in media modelled by the hierarchical KdV equation, Archive of Applied Mechanics, Volume 84 (2014) no. 9-11, pp. 1583-1593 | DOI:10.1007/s00419-014-0861-y | Zbl:1341.35145
  • Jüri Engelbrecht; Andrus Salupere Scaling and hierarchies of wave motion in solids, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 94 (2014) no. 9, pp. 775-783 | DOI:10.1002/zamm.201300042 | Zbl:1298.74125
  • A. Berezovski; J. Engelbrecht; A. Salupere; K. Tamm; T. Peets; M. Berezovski Dispersive waves in microstructured solids, International Journal of Solids and Structures, Volume 50 (2013) no. 11-12, p. 1981 | DOI:10.1016/j.ijsolstr.2013.02.018
  • Hongwei Wang; Amin Esfahani Well-posedness for the Cauchy problem associated to a periodic Boussinesq equation, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 89 (2013), pp. 267-275 | DOI:10.1016/j.na.2013.04.011 | Zbl:1284.35353
  • Igor V. Andrianov; Vladyslav V. Danishevs’kyy; Oleksandr I. Ryzhkov; Dieter Weichert Dynamic homogenization and wave propagation in a nonlinear 1D composite material, Wave Motion, Volume 50 (2013) no. 2, p. 271 | DOI:10.1016/j.wavemoti.2012.08.013
  • Andrus Salupere; Kert Tamm On the influence of material properties on the wave propagation in Mindlin-type microstructured solids, Wave Motion, Volume 50 (2013) no. 7, pp. 1127-1139 | DOI:10.1016/j.wavemoti.2013.05.004 | Zbl:1454.74097
  • Ramon Quintanilla; Giuseppe Saccomandi Phragmén-Lindelöf alternative of exponential type for the solutions of a fourth order dispersive equation, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 23 (2012) no. 2, pp. 105-113 | DOI:10.4171/rlm/620 | Zbl:1245.35127
  • A.V. Porubov; I.V. Andrianov; V.V. Danishevs’kyy Nonlinear strain wave localization in periodic composites, International Journal of Solids and Structures, Volume 49 (2012) no. 23-24, p. 3381 | DOI:10.1016/j.ijsolstr.2012.07.008
  • Amin Esfahani; Steven Levandosky Stability of solitary waves for the generalized higher-order Boussinesq equation, Journal of Dynamics and Differential Equations, Volume 24 (2012) no. 2, pp. 391-425 | DOI:10.1007/s10884-012-9250-9 | Zbl:1260.35180
  • Christo I. Christov Numerical implementation of the asymptotic boundary conditions for steadily propagating 2D solitons of Boussinesq type equations, Mathematics and Computers in Simulation, Volume 82 (2012) no. 6, pp. 1079-1092 | DOI:10.1016/j.matcom.2010.07.030 | Zbl:1320.76031
  • Kert Tamm; Andrus Salupere On the propagation of 1D solitary waves in Mindlin-type microstructured solids, Mathematics and Computers in Simulation, Volume 82 (2012) no. 7, pp. 1308-1320 | DOI:10.1016/j.matcom.2010.06.022 | Zbl:1348.74181
  • C. I. Christov; J. Choudhury Perturbation solution for the 2D Boussinesq equation, Mechanics Research Communications, Volume 38 (2011) no. 3, pp. 274-281 | DOI:10.1016/j.mechrescom.2011.01.014 | Zbl:1272.76182
  • Gérard A. Maugin Solitons in elastic solids (1938–2010), Mechanics Research Communications, Volume 38 (2011) no. 5, pp. 341-349 | DOI:10.1016/j.mechrescom.2011.04.009 | Zbl:1272.74364
  • Arkadi Berezovski; Jüri Engelbrecht; Mihhail Berezovski Dispersive Wave Equations for Solids with Microstructure, Vibration Problems ICOVP 2011, Volume 139 (2011), p. 699 | DOI:10.1007/978-94-007-2069-5_94
  • Jüri Engelbrecht; Andrus Salupere; Kert Tamm Waves in microstructured solids and the Boussinesq paradigm, Wave Motion, Volume 48 (2011) no. 8, pp. 717-726 | DOI:10.1016/j.wavemoti.2011.04.001 | Zbl:1365.74139
  • Gérard A. Maugin Generalized continuum mechanics: what do we mean by that?, Mechanics of generalized continua. One hundred years after the Cosserats. Papers based on the presentations at the EUROMECH colloquium 510, Paris, France, May 13–16, 2009., New York, NY: Springer, 2010, pp. 3-13 | DOI:10.1007/978-1-4419-5695-8_1 | Zbl:1396.74023
  • C. I. Christov The concept of a quasi-particle and the non-probabilistic interpretation of wave mechanics, Mathematics and Computers in Simulation, Volume 80 (2009) no. 1, pp. 91-101 | DOI:10.1016/j.matcom.2009.06.015 | Zbl:1406.74362

Cité par 62 documents. Sources : Crossref, zbMATH

Commentaires - Politique