In this Note we investigate the mathematical properties of the volume penalization method applied to the one-dimensional wave equation. Generally speaking, the penalization method allows one to handle complex geometries by simply adding a term to the equation to impose the boundary conditions. We study the convergence of the method with regards to the penalization parameter and we present error and stability analyses for the wave equation. Numerical simulations using a finite difference scheme illustrate the results.
Nous étudions une méthode de pénalisation pour l'équation des ondes unidimensionelle. Nous présentons une analyse de convergence théorique et une vérification numérique dans le cadre d'une discrétisation uniforme par différences finies.
Mots-clés : Mécanique des fluides numérique, Méthode de pénalisation, Équation des ondes
Aymeric Paccou 1, 2; Guillaume Chiavassa 1, 2; Jacques Liandrat 1, 2; Kai Schneider 3
@article{CRMECA_2005__333_1_79_0, author = {Aymeric Paccou and Guillaume Chiavassa and Jacques Liandrat and Kai Schneider}, title = {A penalization method applied to the wave equation}, journal = {Comptes Rendus. M\'ecanique}, pages = {79--85}, publisher = {Elsevier}, volume = {333}, number = {1}, year = {2005}, doi = {10.1016/j.crme.2004.09.019}, language = {en}, }
TY - JOUR AU - Aymeric Paccou AU - Guillaume Chiavassa AU - Jacques Liandrat AU - Kai Schneider TI - A penalization method applied to the wave equation JO - Comptes Rendus. Mécanique PY - 2005 SP - 79 EP - 85 VL - 333 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2004.09.019 LA - en ID - CRMECA_2005__333_1_79_0 ER -
Aymeric Paccou; Guillaume Chiavassa; Jacques Liandrat; Kai Schneider. A penalization method applied to the wave equation. Comptes Rendus. Mécanique, High-order methods for the numerical simulation of vortical and turbulent flows , Volume 333 (2005) no. 1, pp. 79-85. doi : 10.1016/j.crme.2004.09.019. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.019/
[1] Wavelet and finite element solutions for the Neumann problem using fictitious domains, J. Comput. Phys., Volume 126 (1996) no. 1, pp. 40-51
[2] Flow patterns around heart valves: a numerical method, J. Comput. Phys., Volume 10 (1972) no. 2, pp. 252-271
[3] Sur les conditions hydrodynamiques au voisinage d'une interface milieu fluide-milieux poreux : application à la convection naturelle, C. R. Acad. Sci. Paris, Ser. II, Volume 299 (1984), pp. 1-4
[4] A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., Volume 81 (1999), pp. 497-520
[5] Ficticious domain approach for numerical modelling of Navier–Stokes equations, Int. J. Numer. Methods Fluids, Volume 34 (2000), pp. 651-684
[6] Computation of turbulent flow past an array of cylinders using a spectral method with Brinkmann penalization, Eur. J. Mech. B Fluids, Volume 20 (2001), pp. 333-350
[7] M. Forestier, R. Pasquetti, R. Peyret, Calculations of 3D wakes in stratified fluids, ECCOMAS, 2000
[8] K. Schneider, Modélisation et simulation numérique en base d'ondelettes adaptative, applications en mécanique des fluides et en combustion, Habilitation thesis, université Louis Pasteur Strasbourg, 2001
[9] Adaptative wavelet simulation of a flow around an impulsively started cylinder using penalisation, Appl. Comput. Harm. Anal., Volume 12 (2002), pp. 374-380
[10] Handbook of Mathematical Functions, Dover, New York, 1972
[11] A. Paccou, Méthode de pénalisation et application à l'équation des ondes, Diploma thesis, université de Provence, Marseille, 2003
[12] A.S. Piquemal, Préconditionnements multi-niveaux en ondelettes d'opérateurs elliptiques à coefficients variables discrétisés en différences finies, Ph.D. thesis, université de la Méditerrannée, Marseille, 2001
[13] Point value multi-scale algorithms for 2D compressible flows, SIAM J. Sci. Comput., Volume 23 (2002) no. 3, pp. 805-823
[14] The immersed boundary method, Acta Numerica, vol. 11, 2002, pp. 479-517
[15] Analysis of singular pertubations on the Brinkmann problem for ficticious domain models of vicious flows, Math. Methods Appl. Sci., Volume 22 (1999), pp. 1395-1412
[16] A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys., Volume 192 (2003) no. 2, pp. 593-623
Cited by Sources:
Comments - Policy