[Une méthode hybride, stable et efficace pour la génération et la propagation acoustique]
Nous discutons de la façon de combiner une méthode de volumes finis en maillage non structuré, largement utilisé pour les géométries complexes et les phénomènes non linéaires, avec une méthode trés performante de différences finies d'ordre élevé adapté pour les problèmes dominés par la propagation acoustique. Cette procédure numérique fortement couplée rend compte du caractère couplé des phénomènes de génération et de propagation acoustique. La procédure de couplage est basée sur des estimations de l'énergie et la stabilité peut être alors garantie. Les expériences numériques utilisant les méthodes de différences finies, en regard des résultats théoriques, sont réalisées.
We discuss how to combine the node based unstructured finite volume method widely used to handle complex geometries and nonlinear phenomena with very efficient high order finite difference methods suitable for wave propagation dominated problems. This fully coupled numerical procedure reflects the coupled character of the sound generation and propagation problem. The coupling procedure is based on energy estimates and stability can be guaranteed. Numerical experiments using finite difference methods that shed light on the theoretical results are performed.
Mots-clés : Acoustique, Aéroacoustique, Génération du son, Propagation du son, Méthode hybride, Stabilité, Précision
Jan Nordström 1, 2 ; Jing Gong 2
@article{CRMECA_2005__333_9_713_0, author = {Jan Nordstr\"om and Jing Gong}, title = {A stable and efficient hybrid method for aeroacoustic sound generation and propagation}, journal = {Comptes Rendus. M\'ecanique}, pages = {713--718}, publisher = {Elsevier}, volume = {333}, number = {9}, year = {2005}, doi = {10.1016/j.crme.2005.07.011}, language = {en}, }
Jan Nordström; Jing Gong. A stable and efficient hybrid method for aeroacoustic sound generation and propagation. Comptes Rendus. Mécanique, Computational AeroAcoustics: from acoustic sources modeling to farfield radiated noise prediction, Volume 333 (2005) no. 9, pp. 713-718. doi : 10.1016/j.crme.2005.07.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.07.011/
[1] Finite volume methods, unstructured meshes and strict stability, Appl. Numer. Math., Volume 48 (2003), pp. 453-473
[2] A stable and conservative interface treatment of arbitrary spatial accuracy, J. Comput. Phys., Volume 148 (1999), pp. 341-365
[3] Boundary and interface conditions for high order finite difference methods applied to the Euler and Navier–Stokes equations, J. Comput. Phys., Volume 148 (1999), pp. 621-645
[4] High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates, J. Comput. Phys., Volume 173 (2001), pp. 149-174
[5] Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and applications to high-order compact schemes, J. Comput. Phys., Volume 111 (1994), pp. 220-236
[6] K. Mattsson, M. Svärd, M.H. Carpenter, J. Nordström, J, Accuracy requirements for transient aerodynamics, in: The 16th AIAA CFD Conference, AIAA 2003-3689, Orlando, FL, 2003
- Efficient Propagation and Remapping of Sound Through a Geometric Approach in Virtual Environments and Terrains, IEEE Access, Volume 11 (2023), p. 102828 | DOI:10.1109/access.2023.3312560
- Hybrid Computational-Fluid-Dynamics Platformto Investigate Aircraft Trailing Vortices, Journal of Aircraft, Volume 56 (2019) no. 1, p. 344 | DOI:10.2514/1.c035022
- Energy stable and high-order-accurate finite difference methods on staggered grids, Journal of Computational Physics, Volume 346 (2017), pp. 572-589 | DOI:10.1016/j.jcp.2017.06.030 | Zbl:1380.65173
- Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation, Journal of Computational Physics, Volume 348 (2017), pp. 416-432 | DOI:10.1016/j.jcp.2017.07.046 | Zbl:1380.65284
- Weak and strong wall boundary procedures and convergence to steady-state of the Navier-Stokes equations, Journal of Computational Physics, Volume 231 (2012) no. 14, pp. 4867-4884 | DOI:10.1016/j.jcp.2012.04.007 | Zbl:1245.76020
- Interface procedures for finite difference approximations of the advection-diffusion equation, Journal of Computational and Applied Mathematics, Volume 236 (2011) no. 5, pp. 602-620 | DOI:10.1016/j.cam.2011.08.009 | Zbl:1231.65141
- A stable and efficient hybrid scheme for viscous problems in complex geometries, Journal of Computational Physics, Volume 226 (2007) no. 2, pp. 1291-1309 | DOI:10.1016/j.jcp.2007.05.018 | Zbl:1121.76041
- High order finite difference methods for wave propagation in discontinuous media, Journal of Computational Physics, Volume 220 (2006) no. 1, pp. 249-269 | DOI:10.1016/j.jcp.2006.05.007 | Zbl:1158.65333
Cité par 8 documents. Sources : Crossref, zbMATH
Commentaires - Politique