Comptes Rendus
Estimation of aerodynamic noise generated by forced compressible round jets
[Estimation du bruit d'origine aérodynamique rayonné par des jets ronds forcés compressibles]
Comptes Rendus. Mécanique, Volume 334 (2006) no. 5, pp. 285-291.

Un code numérique d'acoustique basé sur l'analogie de Lighthill est combiné avec des simulations de grandes échelles de jets ronds compressibles, afin de déterminer le bruit rayonné par les jets subsoniques (M=0,7) et supersoniques (M=1,4). On montre d'abord que, pour un nombre de Mach de 0.9 et un nombre de Reynolds de 3,6×103, les intensités acoustiques ont un accord satisfaisant avec les données expérimentales de la littérature, en terme de niveaux et de directivité. On étudie ensuite des jets libres et forcés à des nombres de Mach de 0,7 et 1,4 et des nombres de Reynolds élevés (Re=3,6×104). Les résultats numériques montrent que l'intensité du bruit du jet dépend de l'état de la couche de mélange amont. En effet, le jet subsonique est 4 dB plus silencieux que le jet libre lorsque l'on manipule sa couche de mélange amont en superposant la combinaison d'une perturbation variqueuse et d'une alternée au mode préférentiel et sous-harmonique, respectivement. Au contraire, le niveau de bruit du jet supersonique est 3 dB plus faible que le jet libre avec une perturbation amont alternée au deuxième mode sous-harmonique. Les résultats obtenus confirment des travaux antérieurs présentés dans la littérature et montrant que le bruit des jets peut être modifié selon les conditions amont.

An acoustic numerical code based on Ligthill's analogy is combined with large-eddy simulations techniques in order to evaluate the noise emitted by subsonic (M=0.7) and supersonic (M=1.4) round jets. We show first that, for centerline Mach number M=0.9 and Reynolds number Re=3.6×103, acoustic intensities compare satisfactorily with experimental data of the literature in terms of levels and directivity. Afterwards, high Reynolds number (Re=3.6×104) free and forced jets at Mach 0.7 and 1.4 are studied. Numerical results show that the jet noise intensity depends on the nature of the upstream mixing layer. Indeed, the subsonic jet is 4 dB quieter than the free jet when acting on this shear layer by superposing inlet varicose and flapping perturbations at preferred and first subharmonic frequency, respectively. The maximal acoustic level of the supersonic jet is, on the other hand, 3 dB lower than the free one with a flapping upstream perturbation at the second subharmonic. The results reported in this paper confirm previous works presented in the literature demonstrating that jet noise may be modified according to the inlet conditions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2006.03.006
Keywords: Computational fluid mechanics, Acoustics, Turbulence, Compressible jets control
Mot clés : Mécanique des fluides numérique, Acoustique, Turbulence, Contrôle de jets compressibles

Mohamed Maidi 1

1 Équipe MoST/LEGI, B.P. 53, 38041 Grenoble cedex 09, France
@article{CRMECA_2006__334_5_285_0,
     author = {Mohamed Maidi},
     title = {Estimation of aerodynamic noise generated by forced compressible round jets},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {285--291},
     publisher = {Elsevier},
     volume = {334},
     number = {5},
     year = {2006},
     doi = {10.1016/j.crme.2006.03.006},
     language = {en},
}
TY  - JOUR
AU  - Mohamed Maidi
TI  - Estimation of aerodynamic noise generated by forced compressible round jets
JO  - Comptes Rendus. Mécanique
PY  - 2006
SP  - 285
EP  - 291
VL  - 334
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2006.03.006
LA  - en
ID  - CRMECA_2006__334_5_285_0
ER  - 
%0 Journal Article
%A Mohamed Maidi
%T Estimation of aerodynamic noise generated by forced compressible round jets
%J Comptes Rendus. Mécanique
%D 2006
%P 285-291
%V 334
%N 5
%I Elsevier
%R 10.1016/j.crme.2006.03.006
%G en
%F CRMECA_2006__334_5_285_0
Mohamed Maidi. Estimation of aerodynamic noise generated by forced compressible round jets. Comptes Rendus. Mécanique, Volume 334 (2006) no. 5, pp. 285-291. doi : 10.1016/j.crme.2006.03.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.03.006/

[1] K.A. Bishop; J.E. Ffowcs Williams; W. Smith On the noise sources of the unsuppressed high-speed jet, J. Fluid Mech., Volume 50 (1971), pp. 21-31

[2] D. Juvé; M. Sunyach; G. Comte-Bellot Intermittency of the noise emission in subsonic cold jets, J. Sound & Vib., Volume 71 (1980) no. 3, pp. 319-332

[3] J. Laufer; T. Yen Noise generation by a low-Mach-number jet, J. Fluid Mech., Volume 134 (1983), pp. 1-31

[4] J.E. Bridges; K.M.F. Hussain Roles of initial conditions and vortex pairing in jet noise, J. Sound & Vib., Volume 117 (1987) no. 2, pp. 289-311

[5] J.C. Simonich; S. Narayanan; T.J. Barber; M.B. Nishimura Aeroacoustic characterization, noise reduction, and dimensional scaling effects of high subsonic jets, AIAA Journal, Volume 39 (2001) no. 11, pp. 2062-2069

[6] C. Bogey; C. Bailly Downstream subsonic jet noise: link with vortical structures intruding into the jet core, C. R. Mecanique, Volume 330 (2002), pp. 527-533

[7] C. Bogey; C. Bailly Effects of inflow conditions and forcing on a Mach 0.9 jet and its radiated noise, AIAA Journal, Volume 43 (2005) no. 5, pp. 1000-1007

[8] M. Maidi, M. Lesieur, O. Métais, Vortex control in large-eddy simulations of compressible round jets, Journal of Turbulence (2005), in press

[9] M. Maidi, Étude et contrôle des jets ronds compressibles par simulations des grandes échelles, PhD thesis, Grenoble (2004)

[10] M. Lesieur; O. Métais; P. Comte Large-Eddy Simulations of Turbulence, Cambridge Univ. Press, Cambridge, UK, 2005

[11] M. Maidi; M. Lesieur Large-eddy simulations of spatially-growing subsonic and supersonic turbulent round jets, Journal of Turbulence, Volume 6 (2005) no. 38, pp. 1-20

[12] G. Urbin; O. Métais Large-eddy simulations of three-dimensional spatially-developing round jets (P.R. Chollet; J.P. Voke; L. Kleiser, eds.), Direct and Large-Eddy Simulations II, Kluwer Academic Publishers, Boston, MA, 1997, pp. 539-542

[13] I. Danaila; B.J. Boersma Direct numerical simulation of bifurcating jets, Phys. Fluids A, Volume 12 (2000), pp. 1255-1257

[14] C.B. da Silva; O. Métais Vortex control of bifurcating jets: a numerical study, Phys. Fluids, Volume 14 (2002), pp. 3798-3819

[15] M.J. Lighthill On the sound generated aerodynamically I. General theory, Proc. Roy. Soc. A, Volume 221 (1952), pp. 564-587

[16] J.L. Stromberg; D.K. Mclaughlin; T.R. Troutt Flow field and acoustic properties of a Mach number 0.9 jet at low Reynolds number, J. Sound & Vib., Volume 72 (1980), pp. 159-176

[17] J.B. Freund, S.K. Lele, P. Moin, Acoustic sources in a turbulent jet: a direct numerical simulation study, AIAA paper 99-1858 (1999)

[18] K.B.M.Q. Zaman Flow field and near and far sound field of a subsonic jet, J. Sound & Vib., Volume 106 (1986), pp. 1-16

Cité par Sources :

Commentaires - Politique