An acoustic numerical code based on Ligthill's analogy is combined with large-eddy simulations techniques in order to evaluate the noise emitted by subsonic and supersonic round jets. We show first that, for centerline Mach number and Reynolds number , acoustic intensities compare satisfactorily with experimental data of the literature in terms of levels and directivity. Afterwards, high Reynolds number free and forced jets at Mach 0.7 and 1.4 are studied. Numerical results show that the jet noise intensity depends on the nature of the upstream mixing layer. Indeed, the subsonic jet is 4 dB quieter than the free jet when acting on this shear layer by superposing inlet varicose and flapping perturbations at preferred and first subharmonic frequency, respectively. The maximal acoustic level of the supersonic jet is, on the other hand, 3 dB lower than the free one with a flapping upstream perturbation at the second subharmonic. The results reported in this paper confirm previous works presented in the literature demonstrating that jet noise may be modified according to the inlet conditions.
Un code numérique d'acoustique basé sur l'analogie de Lighthill est combiné avec des simulations de grandes échelles de jets ronds compressibles, afin de déterminer le bruit rayonné par les jets subsoniques et supersoniques . On montre d'abord que, pour un nombre de Mach de 0.9 et un nombre de Reynolds de , les intensités acoustiques ont un accord satisfaisant avec les données expérimentales de la littérature, en terme de niveaux et de directivité. On étudie ensuite des jets libres et forcés à des nombres de Mach de 0,7 et 1,4 et des nombres de Reynolds élevés . Les résultats numériques montrent que l'intensité du bruit du jet dépend de l'état de la couche de mélange amont. En effet, le jet subsonique est 4 dB plus silencieux que le jet libre lorsque l'on manipule sa couche de mélange amont en superposant la combinaison d'une perturbation variqueuse et d'une alternée au mode préférentiel et sous-harmonique, respectivement. Au contraire, le niveau de bruit du jet supersonique est 3 dB plus faible que le jet libre avec une perturbation amont alternée au deuxième mode sous-harmonique. Les résultats obtenus confirment des travaux antérieurs présentés dans la littérature et montrant que le bruit des jets peut être modifié selon les conditions amont.
Accepted:
Published online:
Mot clés : Mécanique des fluides numérique, Acoustique, Turbulence, Contrôle de jets compressibles
Mohamed Maidi 1
@article{CRMECA_2006__334_5_285_0, author = {Mohamed Maidi}, title = {Estimation of aerodynamic noise generated by forced compressible round jets}, journal = {Comptes Rendus. M\'ecanique}, pages = {285--291}, publisher = {Elsevier}, volume = {334}, number = {5}, year = {2006}, doi = {10.1016/j.crme.2006.03.006}, language = {en}, }
Mohamed Maidi. Estimation of aerodynamic noise generated by forced compressible round jets. Comptes Rendus. Mécanique, Volume 334 (2006) no. 5, pp. 285-291. doi : 10.1016/j.crme.2006.03.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.03.006/
[1] On the noise sources of the unsuppressed high-speed jet, J. Fluid Mech., Volume 50 (1971), pp. 21-31
[2] Intermittency of the noise emission in subsonic cold jets, J. Sound & Vib., Volume 71 (1980) no. 3, pp. 319-332
[3] Noise generation by a low-Mach-number jet, J. Fluid Mech., Volume 134 (1983), pp. 1-31
[4] Roles of initial conditions and vortex pairing in jet noise, J. Sound & Vib., Volume 117 (1987) no. 2, pp. 289-311
[5] Aeroacoustic characterization, noise reduction, and dimensional scaling effects of high subsonic jets, AIAA Journal, Volume 39 (2001) no. 11, pp. 2062-2069
[6] Downstream subsonic jet noise: link with vortical structures intruding into the jet core, C. R. Mecanique, Volume 330 (2002), pp. 527-533
[7] Effects of inflow conditions and forcing on a Mach 0.9 jet and its radiated noise, AIAA Journal, Volume 43 (2005) no. 5, pp. 1000-1007
[8] M. Maidi, M. Lesieur, O. Métais, Vortex control in large-eddy simulations of compressible round jets, Journal of Turbulence (2005), in press
[9] M. Maidi, Étude et contrôle des jets ronds compressibles par simulations des grandes échelles, PhD thesis, Grenoble (2004)
[10] Large-Eddy Simulations of Turbulence, Cambridge Univ. Press, Cambridge, UK, 2005
[11] Large-eddy simulations of spatially-growing subsonic and supersonic turbulent round jets, Journal of Turbulence, Volume 6 (2005) no. 38, pp. 1-20
[12] Large-eddy simulations of three-dimensional spatially-developing round jets (P.R. Chollet; J.P. Voke; L. Kleiser, eds.), Direct and Large-Eddy Simulations II, Kluwer Academic Publishers, Boston, MA, 1997, pp. 539-542
[13] Direct numerical simulation of bifurcating jets, Phys. Fluids A, Volume 12 (2000), pp. 1255-1257
[14] Vortex control of bifurcating jets: a numerical study, Phys. Fluids, Volume 14 (2002), pp. 3798-3819
[15] On the sound generated aerodynamically I. General theory, Proc. Roy. Soc. A, Volume 221 (1952), pp. 564-587
[16] Flow field and acoustic properties of a Mach number 0.9 jet at low Reynolds number, J. Sound & Vib., Volume 72 (1980), pp. 159-176
[17] J.B. Freund, S.K. Lele, P. Moin, Acoustic sources in a turbulent jet: a direct numerical simulation study, AIAA paper 99-1858 (1999)
[18] Flow field and near and far sound field of a subsonic jet, J. Sound & Vib., Volume 106 (1986), pp. 1-16
Cited by Sources:
Comments - Policy