The aim of this Note is to show that a class of anisotropic elastic-damage models including unilateral effects can be considered, for constant damage values, as non-linear and non-conservative elastic. The conservative character of corresponding constitutive models is related to the symmetry of the Hessian tensor. For the models under consideration, it is shown that the condition of conservativeness (existence of the elastic potential energy function) is obtained only when there is coaxiality of the strain and damage tensors.
L'objectif de cette note est de montrer qu'une classe de modèles élastique-endommageables anisotropes avec prise en compte spécifique des effets unilatéraux représente en réalité, à endommagement constant, une forme d'élasticité non-linéaire non-conservative. Le caractère conservatif (existence du potentiel thermodynamique) est équivalent à la symétrie du tenseur Hessien. On montre alors que, pour la classe de modèles considérés, la condition de conservation de l'énergie n'est assurée que lorsque les directions principales des tenseurs d'endommagement et de déformation coïncident (coaxialité au sens du dommage).
Accepted:
Published online:
Mots-clés : Endommagement, Elasticité non-linéaire, Endommagement tensoriel, Effet unilatéral, Systeme non conservatif, Hessien
Noël Challamel 1; Damien Halm 2; André Dragon 2
@article{CRMECA_2006__334_7_414_0, author = {No\"el Challamel and Damien Halm and Andr\'e Dragon}, title = {On the non-conservativeness of a class of anisotropic damage models with unilateral effects}, journal = {Comptes Rendus. M\'ecanique}, pages = {414--418}, publisher = {Elsevier}, volume = {334}, number = {7}, year = {2006}, doi = {10.1016/j.crme.2006.05.006}, language = {en}, }
TY - JOUR AU - Noël Challamel AU - Damien Halm AU - André Dragon TI - On the non-conservativeness of a class of anisotropic damage models with unilateral effects JO - Comptes Rendus. Mécanique PY - 2006 SP - 414 EP - 418 VL - 334 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2006.05.006 LA - en ID - CRMECA_2006__334_7_414_0 ER -
Noël Challamel; Damien Halm; André Dragon. On the non-conservativeness of a class of anisotropic damage models with unilateral effects. Comptes Rendus. Mécanique, Volume 334 (2006) no. 7, pp. 414-418. doi : 10.1016/j.crme.2006.05.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.05.006/
[1] On an anisotropic damage theory (J.P. Boehler, ed.), Failure Criteria for Structural Media, Balkema, Rotterdam, 1993, pp. 355-363
[2] Development of Continuum Damage Mechanics for elastic solids sustaining anisotropic and unilateral damage, Int. J. Damage Mech., Volume 2 (1993), pp. 311-329
[3] A model of anisotropic damage by mesocrack growth: unilateral effect, Int. J. Damage Mech., Volume 5 (1996), pp. 384-402
[4] A critical review of some damage models with unilateral effect, Mech. Res. Comm., Volume 29 (2002), pp. 391-395
[5] Nonconservative Problems of the Theory of Elastic Stability, Pergamon Press, New York, 1963
[6] On thermodynamics, rate of work and energy, Arch. Rat. Mech. Anal., Volume 40 (1971), pp. 37-49
[7] On energy-based coupled elastoplastic damage theories, Int. J. Solids Structures, Volume 25 (1989), pp. 803-833
[8] A constitutive theory for the inelastic behavior of concrete, Mech. Mater., Volume 4 (1985), pp. 67-93
[9] Anisotropic damage with MCR effect coupled to plasticity, Int. J. Eng. Sci., Volume 41 (2003), pp. 1535-1551
[10] Optimization and Nonsmooth Analysis, Wiley, New York, 1983
[11] Computation of isotropic tensor functions, Comm. Num. Meth. Engrg., Volume 9 (1993), pp. 889-896
[12] Eigentensors of linear anisotropic elastic materials, Quart. J. Mech. Appl. Math., Volume 43 (1990), pp. 15-41
[13] Strain-based anisotropic damage modelling and unilateral effects, Int. J. Mech. Sci., Volume 47 (2005), pp. 459-473
[14] Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics, Int. J. Mech. Sci., Volume 39 (1997), pp. 473-486
[15] Anisotropic damage law of evolution, Eur. J. Mech. A/Solids, Volume 19 (2000), pp. 187-208
[16] Instability and the ill-posed Cauchy problem in elasticity (H.G. Hopkins; M.J. Sewell, eds.), Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, Pergamon Press, New York, 1982, pp. 357-382
[17] Spurious energy dissipation/generation in stiffness recovery models for elastic degradation and damage, Int. J. Solids Structures, Volume 33 (1996), pp. 2939-2957
Cited by Sources:
Comments - Policy