[Surfaces iso-scalaires, mélange, et réaction dans des écoulements]
Turbulent scalar mixing with chemical reaction is investigated in terms of the local geometrical features of the iso-scalar surfaces—‘scalar field topologies’—, using Direct Numerical Simulation data. Two scalars with identical initial distribution, one inert and the other obeying a prescribed Arrhenius-like chemical reaction, evolve in homogeneous isotropic turbulence with a mesh size 2563. The two local principal curvatures,
Le mélange turbulent de scalaires en présence de réaction chimique est considéré en termes de caractéristiques géométriques locales de surfaces iso-scalaires— « topologies de champs scalaires »—, à partir de données de simulations numériques directes. Deux scalaires de distributions initiales identiques, un inerte et l'autre obeissant à une réaction chimique prescrite du type Arrhenius, évoluent dans une turbulence homogène et isotrope sur une grille 2563. Les deux courbures principales,
Mots-clés : Turbulence, Écoulements turbulents réactifs, Mélange d'un scalaire, Simulations Numériques Directes, Courbure
César Dopazo 1 ; Jesús Martín 1 ; Juan Hierro 1, 2
@article{CRMECA_2006__334_8-9_483_0, author = {C\'esar Dopazo and Jes\'us Mart{\'\i}n and Juan Hierro}, title = {Iso-scalar surfaces, mixing and reaction in turbulent flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {483--492}, publisher = {Elsevier}, volume = {334}, number = {8-9}, year = {2006}, doi = {10.1016/j.crme.2006.07.004}, language = {en}, }
César Dopazo; Jesús Martín; Juan Hierro. Iso-scalar surfaces, mixing and reaction in turbulent flows. Comptes Rendus. Mécanique, Observation, analysis and modelling in complex fluid media, Volume 334 (2006) no. 8-9, pp. 483-492. doi : 10.1016/j.crme.2006.07.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.07.004/
[1] Dynamics of Curved Fronts (P. Pelcé, ed.), Academic Press, Inc., 1988
[2] Pocket formation and the flame surface density equation, 27th Symp. (Internat.) on Combust., The Combustion Institute, Pittsburgh, 1998, p. 927
[3] Flame stretch and the balance equation for the flame area, Combust. Sci. Technol., Volume 70 (1990), pp. 1-15
[4] G. Brethouwer, Mixing of passive and reactive scalars in turbulent flows. A numerical study, PhD Dissertation, Tech. Univ. Delft, Ponsen & Looijen, The Netherlands, 2000
[5] Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames, 28th Symp. (Internat.) on Combust., The Combustion Institute, Pittsburgh, 2000, p. 211
[6] Numerical simulations of Lewis number effects in turbulent premixed flames, J. Fluid Mech., Volume 244 (1992), pp. 405-436
[7] The curvature of material surfaces in isotropic turbulence, Phys. Fluids A, Volume 1 (1989), pp. 2010-2018
[8] Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration, Combust. Flame, Volume 137 (2004), pp. 129-147
[9] Unsteady strain rate and curvature effects in turbulent premixed methane/air flames, Combust. Flame, Volume 106 (1996), pp. 184-202
[10] Recent developments in PDF methods (P.A. Libby; F.A. Williams, eds.), Turbulent Reacting Flows, Academic Press, London, 1994, pp. 375-474
[11] C. Dopazo, J. Martin, J.P. Hierro, Turbulent mixing and combustion, in: 2nd Mediterranean Combust. Symp., Invited paper, Sharm-El-Sheik, January 6–11, 2002
[12] The influence of iso-scalar surface curvature on turbulent mixing and reaction, Simplicity, Rigor and Relevance in Fluid Mechanics. A Volume in Honor of Amable Liñán, CIMNE, Barcelona, 2004, pp. 187-214
[13] Surface density function in premixed turbulent combustion modelling. Similarities between probability density function and flame surface approaches, Phys. Fluids, Volume 10 (1995) no. 7, pp. 2496-2503
[14] Numerical simulation of turbulent reacting flows, 10th Internat. Symp. on Turbulence, Univ. of Rolla, Missouri, 1986
[15] Analysis of the contribution of curvature to premixed flame propagation, Combust. Flame, Volume 118 (1999), pp. 308-311
[16] Direct numerical simulation of the turbulent mixing of a passive scalar, Phys. Fluids, Volume 31 (1988), pp. 506-520
[17] The turbulent burning velocity for large scale and small scale turbulence, J. Fluid Mech., Volume 384 (1999), pp. 107-132
- A direct numerical simulation study on the structures and turbulence–flame interactions of a laboratory-scale lean premixed jet flame in cross-flow, Journal of Fluid Mechanics, Volume 957 (2023) | DOI:10.1017/jfm.2023.78
- Diffusive and convective dissolution of carbon dioxide in a vertical cylindrical cell, Physical Review Fluids, Volume 8 (2023) no. 9 | DOI:10.1103/physrevfluids.8.093501
- Interactions Between Flame Topology and Turbulent Transport in High-Pressure Premixed Combustion, Flow, Turbulence and Combustion, Volume 109 (2022) no. 3, p. 813 | DOI:10.1007/s10494-022-00338-6
- Connecting the time evolution of the turbulence interface to coherent structures, Journal of Fluid Mechanics, Volume 898 (2020), p. 24 (Id/No a3) | DOI:10.1017/jfm.2020.414 | Zbl:1460.76509
- Micro-scale Mixing in Turbulent Constant Density Reacting Flows and Premixed Combustion, Flow, Turbulence and Combustion, Volume 96 (2016) no. 2, p. 547 | DOI:10.1007/s10494-015-9663-8
- Local flow topologies and scalar structures in a turbulent premixed flame, Physics of Fluids, Volume 26 (2014) no. 6 | DOI:10.1063/1.4884555
- Effects of mean shear on the local turbulent entrainment process, Journal of Fluid Mechanics, Volume 731 (2013), pp. 95-116 | DOI:10.1017/jfm.2013.365 | Zbl:1294.76168
- Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling, Combustion Theory and Modelling, Volume 16 (2012) no. 6, p. 943 | DOI:10.1080/13647830.2012.686172
- Investigations on the local entrainment velocity in a turbulent jet, Physics of Fluids, Volume 24 (2012) no. 10 | DOI:10.1063/1.4761837
- Local geometry of isoscalar surfaces, Physical Review E, Volume 76 (2007) no. 5 | DOI:10.1103/physreve.76.056316
Cité par 10 documents. Sources : Crossref, zbMATH
Commentaires - Politique