[Surfaces iso-scalaires, mélange, et réaction dans des écoulements]
Le mélange turbulent de scalaires en présence de réaction chimique est considéré en termes de caractéristiques géométriques locales de surfaces iso-scalaires— « topologies de champs scalaires »—, à partir de données de simulations numériques directes. Deux scalaires de distributions initiales identiques, un inerte et l'autre obeissant à une réaction chimique prescrite du type Arrhenius, évoluent dans une turbulence homogène et isotrope sur une grille 2563. Les deux courbures principales,
Turbulent scalar mixing with chemical reaction is investigated in terms of the local geometrical features of the iso-scalar surfaces—‘scalar field topologies’—, using Direct Numerical Simulation data. Two scalars with identical initial distribution, one inert and the other obeying a prescribed Arrhenius-like chemical reaction, evolve in homogeneous isotropic turbulence with a mesh size 2563. The two local principal curvatures,
Mots-clés : Turbulence, Écoulements turbulents réactifs, Mélange d'un scalaire, Simulations Numériques Directes, Courbure
César Dopazo 1 ; Jesús Martín 1 ; Juan Hierro 1, 2
@article{CRMECA_2006__334_8-9_483_0, author = {C\'esar Dopazo and Jes\'us Mart{\'\i}n and Juan Hierro}, title = {Iso-scalar surfaces, mixing and reaction in turbulent flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {483--492}, publisher = {Elsevier}, volume = {334}, number = {8-9}, year = {2006}, doi = {10.1016/j.crme.2006.07.004}, language = {en}, }
César Dopazo; Jesús Martín; Juan Hierro. Iso-scalar surfaces, mixing and reaction in turbulent flows. Comptes Rendus. Mécanique, Observation, analysis and modelling in complex fluid media, Volume 334 (2006) no. 8-9, pp. 483-492. doi : 10.1016/j.crme.2006.07.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.07.004/
[1] Dynamics of Curved Fronts (P. Pelcé, ed.), Academic Press, Inc., 1988
[2] Pocket formation and the flame surface density equation, 27th Symp. (Internat.) on Combust., The Combustion Institute, Pittsburgh, 1998, p. 927
[3] Flame stretch and the balance equation for the flame area, Combust. Sci. Technol., Volume 70 (1990), pp. 1-15
[4] G. Brethouwer, Mixing of passive and reactive scalars in turbulent flows. A numerical study, PhD Dissertation, Tech. Univ. Delft, Ponsen & Looijen, The Netherlands, 2000
[5] Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames, 28th Symp. (Internat.) on Combust., The Combustion Institute, Pittsburgh, 2000, p. 211
[6] Numerical simulations of Lewis number effects in turbulent premixed flames, J. Fluid Mech., Volume 244 (1992), pp. 405-436
[7] The curvature of material surfaces in isotropic turbulence, Phys. Fluids A, Volume 1 (1989), pp. 2010-2018
[8] Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration, Combust. Flame, Volume 137 (2004), pp. 129-147
[9] Unsteady strain rate and curvature effects in turbulent premixed methane/air flames, Combust. Flame, Volume 106 (1996), pp. 184-202
[10] Recent developments in PDF methods (P.A. Libby; F.A. Williams, eds.), Turbulent Reacting Flows, Academic Press, London, 1994, pp. 375-474
[11] C. Dopazo, J. Martin, J.P. Hierro, Turbulent mixing and combustion, in: 2nd Mediterranean Combust. Symp., Invited paper, Sharm-El-Sheik, January 6–11, 2002
[12] The influence of iso-scalar surface curvature on turbulent mixing and reaction, Simplicity, Rigor and Relevance in Fluid Mechanics. A Volume in Honor of Amable Liñán, CIMNE, Barcelona, 2004, pp. 187-214
[13] Surface density function in premixed turbulent combustion modelling. Similarities between probability density function and flame surface approaches, Phys. Fluids, Volume 10 (1995) no. 7, pp. 2496-2503
[14] Numerical simulation of turbulent reacting flows, 10th Internat. Symp. on Turbulence, Univ. of Rolla, Missouri, 1986
[15] Analysis of the contribution of curvature to premixed flame propagation, Combust. Flame, Volume 118 (1999), pp. 308-311
[16] Direct numerical simulation of the turbulent mixing of a passive scalar, Phys. Fluids, Volume 31 (1988), pp. 506-520
[17] The turbulent burning velocity for large scale and small scale turbulence, J. Fluid Mech., Volume 384 (1999), pp. 107-132
- A direct numerical simulation study on the structures and turbulence–flame interactions of a laboratory-scale lean premixed jet flame in cross-flow, Journal of Fluid Mechanics, Volume 957 (2023) | DOI:10.1017/jfm.2023.78
- Diffusive and convective dissolution of carbon dioxide in a vertical cylindrical cell, Physical Review Fluids, Volume 8 (2023) no. 9 | DOI:10.1103/physrevfluids.8.093501
- Interactions Between Flame Topology and Turbulent Transport in High-Pressure Premixed Combustion, Flow, Turbulence and Combustion, Volume 109 (2022) no. 3, p. 813 | DOI:10.1007/s10494-022-00338-6
- Connecting the time evolution of the turbulence interface to coherent structures, Journal of Fluid Mechanics, Volume 898 (2020), p. 24 (Id/No a3) | DOI:10.1017/jfm.2020.414 | Zbl:1460.76509
- Micro-scale Mixing in Turbulent Constant Density Reacting Flows and Premixed Combustion, Flow, Turbulence and Combustion, Volume 96 (2016) no. 2, p. 547 | DOI:10.1007/s10494-015-9663-8
- Local flow topologies and scalar structures in a turbulent premixed flame, Physics of Fluids, Volume 26 (2014) no. 6 | DOI:10.1063/1.4884555
- Effects of mean shear on the local turbulent entrainment process, Journal of Fluid Mechanics, Volume 731 (2013), pp. 95-116 | DOI:10.1017/jfm.2013.365 | Zbl:1294.76168
- Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling, Combustion Theory and Modelling, Volume 16 (2012) no. 6, p. 943 | DOI:10.1080/13647830.2012.686172
- Investigations on the local entrainment velocity in a turbulent jet, Physics of Fluids, Volume 24 (2012) no. 10 | DOI:10.1063/1.4761837
- Local geometry of isoscalar surfaces, Physical Review E, Volume 76 (2007) no. 5 | DOI:10.1103/physreve.76.056316
Cité par 10 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier