[Raison d'être et formulation générale d'une description statistique en deux-point pour une combustion turbulente pré-mélangée]
Ce travail considère les paramètres définissant les taux de réactions chimiques dans une combustion turbulente pré-mélangée en insistant sur le cas d'une turbulence forte. Les données expérimentales montrent que non seulement la vitesse de flamme laminaire et l'écart type de la vitesse turbulente mais aussi à la fois les détails de la cinétique chimique et les coefficients de transport moléculaire sont impotants dans ce cas. La détermination des taux de transport moléculaire dans une flamme turbulente nécessite une description statistique en deux points. Afin de construire une telle approche on considère l'équation de transport de la fonction densité de probalité conjointe en deux points de la vitesse et des scalaires. Il s'avère qu'il est possible d'obtenir une fermeture de cette équation, incluant les termes de micro-mélange, à partir de la méthode de Ievlev.
This work undertakes an analysis of parameters defining the rate of chemical reactions in turbulent premixed combustion with particular emphasis on the strong turbulence case. Experimental data show that not only the laminar flame speed and rms turbulent velocity but also both the details of chemical kinetics and the molecular transport coefficients are important in this case. Determination of the molecular transport rates inside a turbulent flame requires a two-point statistical description. In order to construct such a description the transport equation for the two-point joint velocity and scalars probability density function is considered. It proved possible to achieve a closure of the unclosed terms in this equation, including the micromixing terms, following Ievlev's method.
Mot clés : Turbulence, Combustion turbulente prémélangée, Effet du transport moléculaire, Mélange à petite échelle, Fonctions densité de probabilité en deux points
Alexey A. Burluka 1
@article{CRMECA_2006__334_8-9_474_0, author = {Alexey A. Burluka}, title = {Raison d'\^etre and general formulation of two-point statistical description of turbulent premixed combustion}, journal = {Comptes Rendus. M\'ecanique}, pages = {474--482}, publisher = {Elsevier}, volume = {334}, number = {8-9}, year = {2006}, doi = {10.1016/j.crme.2006.07.014}, language = {en}, }
TY - JOUR AU - Alexey A. Burluka TI - Raison d'être and general formulation of two-point statistical description of turbulent premixed combustion JO - Comptes Rendus. Mécanique PY - 2006 SP - 474 EP - 482 VL - 334 IS - 8-9 PB - Elsevier DO - 10.1016/j.crme.2006.07.014 LA - en ID - CRMECA_2006__334_8-9_474_0 ER -
Alexey A. Burluka. Raison d'être and general formulation of two-point statistical description of turbulent premixed combustion. Comptes Rendus. Mécanique, Volume 334 (2006) no. 8-9, pp. 474-482. doi : 10.1016/j.crme.2006.07.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.07.014/
[1] Taux de production chimique en régime turbulent, Entropie, Volume 52 (1973), pp. 7-18
[2] Mise au point sur la structure des flammes turbulentes, J. Chimie Phys., Volume 81 (1984), pp. 361-370
[3] Combustion and Flames—Chemical and Physical Principles, Editions Technip, Paris, 1998
[4] Mixing and chemical reaction in steady confined turbulent flame, XIII Symp. (Int.) on Combust., The Combust. Inst., Pittsburgh, 1971, pp. 649-657
[5] The mathematical modelling of turbulent premixed combustion, Pure Appl. Chem., Volume 62 (1990), pp. 803-814
[6] Laminar flamelet concepts in turbulent combustion, XXI Symp. (Int.) on Combust., The Combust. Inst., Pittsburgh, 1986, pp. 1231-1250
[7] Flame stretch and balance equation for flame area, Combust. Sci. Tech., Volume 70 (1990), pp. 1-15
[8] A new model of premixed wrinkled flame propagation based on a scalar dissipation equation, Combust. Flame, Volume 96 (1994), pp. 443-457
[9] Towards an extended scalar dissipation equation for turbulent premixed combustion, Combust. Flame, Volume 133 (2003), pp. 193-196
[10] Mathematical model of turbulent combustion, Proc. of the 3rd All-Union Symp. on Combust. Theory, Izd-vo AN SSSR, Moscow, 1960, pp. 121-125
[11] A Monte Carlo method for the pdf equations of turbulent reactive flow, Combust. Sci. Tech., Volume 25 (1981), pp. 159-174
[12] A linear-eddy model of turbulent scalar transport and mixing, Combust. Sci. Tech., Volume 60 (1988), pp. 391-421
[13] Studies of new model for small scale processes in turbulent premixed flames, Archivum Combustionis, Volume 15 (1995), pp. 217-226
[14] Statistical model of turbulent premixed combustion with interacting flamelets, Combust. Flame, Volume 109 (1997), pp. 173-187
[15] Marker fields for turbulent premixed combustion, Combust. Flame, Volume 138 (2004), pp. 188-194
[16] Turbulent flame speed and thickness: phenomenology, evaluation and application in multi-dimensional simulations, Progr. Energy Combust. Sci., Volume 28 (2002), pp. 1-74
[17] Molecular transport effects on turbulent flame propagation and structure, Progr. Energy Combust. Sci., Volume 31 (2005), pp. 1-73
[18] , Izv. AN SSSR, Mechanica Zhidk. i Gaza (Turbulent Motion of High-Temperature Continuum Media), Volume 1, Nauka, Moscow, 1970, pp. 91-103 Also:, 1975 (in Russian)
[19] Turbulence local structure in incompressible viscous liquid at very large Reynolds numbers, Dokl. AN SSSR, Volume 30 (1941), pp. 299-303
[20] Burning velocity of turbulent premixed flames in a high pressure environment, XXVI Symp. (Int.) on Combust., The Combust. Inst., Pittsburgh, 1996, pp. 389-396
[21] Influence of turbulence parameters on the flame propagation speed (G.M. Gorbunov, ed.), Flame Stabilisation and Combustion Process Development in a Turbulent Flow, Oborongiz, Moscow, 1961, pp. 31-47
[22] K. Liu, M. Ormsby, R. Woolley, C.G.W. Sheppard, A.A. Burluka, in preparation
[23] Effects of molecular-transport coefficients on the rate of turbulent combustion, Fizika Goreniya i Vzryva, Volume 16 (1980), pp. 45-51
[24] Turbulent combustion of gases, Fizika Goreniya i Vzryva, Volume 3 (1967), pp. 61-76
[25] Dependence of turbulent burning velocity on turbulent Reynolds number and ratio of laminar burning velocity to r.m.s. turbulent velocity, XVI Symp. (Int.) on Combust., The Combust. Inst., Pittsburgh, 1976, pp. 1725-1735
[26] Criteria for turbulent propagation limits of premixed flames, Combust. Flame, Volume 62 (1985), pp. 61-68
[27] Hydrogen combustion in engines and preferential diffusion effects in laminar and turbulent flames, Archivum Combustionis, Volume 15 (1995), pp. 187-215
[28] K. Liu, M.P. Ormsby, J.F. Griffiths, A.A. Burluka, Physical Chemistry Chemical Physics, submitted for publication
[29] Experimental study of general correlation on turbulent burning velocity at high pressure, Proc. Combust. Inst., Volume 27 (1998), pp. 941-948
[30] A study of the premixed turbulent combustion mechanism taking the preferential diffusion effect into consideration, Mémoires of the Faculty of Engineering, Kyushu Univ., Volume 58 (1998), pp. 55-82
[31] Recent developments in pdf methods (P.A. Libby; F.A. Williams, eds.), Turbulent Reacting Flows, Academic Press, London, 1994, pp. 375-473
[32] Equations for finite-dimensions probability distributions for fluctuating quantities in turbulent flow, Dokl. Acad. Nauk SSSR, Volume 208 (1973), pp. 1044-1047
[33] Two-point probability density function closure applied to a diffusive-reactive system, Phys. Fluids, Volume 24 (1981), pp. 194-201
Cité par Sources :
Commentaires - Politique