Comptes Rendus
Two recent developments in numerical simulation of premixed and partially premixed turbulent flames
[Deux développements récents en simulation numérique de flammes turbulentes en combustion prémélangée et partiellement prémélangée]
Comptes Rendus. Mécanique, Volume 334 (2006) no. 8-9, pp. 523-530.

Un modèle de fermeture sous maille pour des simulations des grandes échelles de combustion turbulente prémélangée (FSD-PDF) est proposé. Il combine l'approche de Densité de Surface de Flamme (FSD) avec une densité de probabilité présumée (PDF) pour la variable qui traduit l'avancement de la réaction dans la tabulation utilisée pour la chimie. La méthode FSD est utile pour introduire dans la PDF présumée l'influence de la zone fine de réaction filtrée spatialement qui évolue à l'intérieur de la sous-maille. Ceci est obtenu via la relation exacte qui lie la PDF et la FSD. Dans une seconde partie, des résultats de Simulation Numérique Directe (DNS) pour de la combustion partiellement prémélangée dans un écoulement avec rotation (swirl) sont reportés. Les résultats sont utilisés pour analyser la structure de la flamme de bord d'entrée qui assure la stabilisation de la flamme.

A subgrid scale closure for Large Eddy Simulation of premixed turbulent combustion (FSD-PDF) is proposed. It combines the Flame Surface Density (FSD) approach with a presumed Probability Density Function (PDF) of the progress variable that is used in flamelet chemistry tabulation. The FSD is useful to introduce in the presumed PDF the influence of the spatially filtered thin reaction zone evolving within the subgrid. This is achieved via the exact relation between the PDF and the FSD. In a second part, Direct Numerical Simulation of partially premixed combustion in a swirling flow is reported. The results are used to analyze the structure of the leading edge flame that ensures flame stabilization.

Publié le :
DOI : 10.1016/j.crme.2006.07.008
Keywords: Turbulence, Combustion, Flames, Numerical simulation
Mot clés : Turbulence, Combustion, Flammes, Simulation numérique
Luc Vervisch 1 ; Pascale Domingo 1

1 INSA de Rouen, UMR-CNRS-6614-CORIA, campus du Madrillet, avenue de l'université, BP 8, 76801 Saint Étienne du Rouvray cedex, France
@article{CRMECA_2006__334_8-9_523_0,
     author = {Luc Vervisch and Pascale Domingo},
     title = {Two recent developments in numerical simulation of premixed and partially premixed turbulent flames},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {523--530},
     publisher = {Elsevier},
     volume = {334},
     number = {8-9},
     year = {2006},
     doi = {10.1016/j.crme.2006.07.008},
     language = {en},
}
TY  - JOUR
AU  - Luc Vervisch
AU  - Pascale Domingo
TI  - Two recent developments in numerical simulation of premixed and partially premixed turbulent flames
JO  - Comptes Rendus. Mécanique
PY  - 2006
SP  - 523
EP  - 530
VL  - 334
IS  - 8-9
PB  - Elsevier
DO  - 10.1016/j.crme.2006.07.008
LA  - en
ID  - CRMECA_2006__334_8-9_523_0
ER  - 
%0 Journal Article
%A Luc Vervisch
%A Pascale Domingo
%T Two recent developments in numerical simulation of premixed and partially premixed turbulent flames
%J Comptes Rendus. Mécanique
%D 2006
%P 523-530
%V 334
%N 8-9
%I Elsevier
%R 10.1016/j.crme.2006.07.008
%G en
%F CRMECA_2006__334_8-9_523_0
Luc Vervisch; Pascale Domingo. Two recent developments in numerical simulation of premixed and partially premixed turbulent flames. Comptes Rendus. Mécanique, Volume 334 (2006) no. 8-9, pp. 523-530. doi : 10.1016/j.crme.2006.07.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.07.008/

[1] P. Domingo, L. Vervisch, DNS of partially premixed flame propagating in a turbulent rotating flow, in preparation

[2] P. Domingo; L. Vervisch; S. Payet; R. Hauguel DNS of a premixed turbulent v-flame and LES of a ducted-flame using a FSD-PDF subgrid scale closure with FPI tabulated chemistry, Combust. Flame, Volume 134 (2005) no. 4, pp. 566-586

[3] R. Borghi Turbulent combustion modelling, Prog. Energy Combust. Sci., Volume 14 (1988), pp. 245-292

[4] B. Fiorina; R. Baron; O. Gicquel; D. Thevenin; S. Carpentier; N. Darabiha Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM, Combust. Theory Model., Volume 7 (2003) no. 3, pp. 449-470

[5] K.N.C. Bray The challenge of turbulent combustion, Proc. Combust. Inst., Volume 26 (1996), pp. 1-26

[6] L. Vervisch; E. Bidaux; K.N.C. Bray; W. Kollmann Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches, Phys. Fluids, Volume 7 (1995) no. 10, pp. 2496-2503

[7] L. Vervisch, W. Kollmann, K.N.C. Bray, Dynamics of iso-concentration surfaces in premixed turbulent flames, in: Tenth Symposium on Turbulent Shear Flows, 1995, number 22-1

[8] P.A. Libby; F.A. Williams Turbulent combustion: Fundamental aspects and a review (P.A. Libby; F.A. Williams, eds.), Turbulent Reacting Flows, Academic Press, London, 1994, pp. 2-61

[9] P.D. Nguyen; P. Bruel Turbulent reacting flow in a dump combustor: experimental determination of the influence of the inlet equivalence ratio difference on the contribution of the coherent and stochastic motions to the velocity field dynamics, Reno, USA, January 2003 (2003) (Paper 2003-0958)

[10] F. Ducros; F. Laporte; T. Soulères; V. Guinot; P. Moinat; B. Caruelle High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows, J. Comput. Phys., Volume 161 (2000), pp. 114-139

[11] T. Poinsot; S.K. Lele Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 1 (1992) no. 101, pp. 104-129

[12] C. Schneider; A. Dreizler; J. Janicka Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows, Flow Turbulence Combust., Volume 74 (2005) no. 1, pp. 103-127

[13] P. Domingo; L. Vervisch; J. Réveillon DNS analysis of partially premixed combustion in spray and gaseous turbulent-flame bases stabilized in hot air, Combust. Flame, Volume 140 (2005) no. 3, pp. 172-195

[14] J. Reveillon; L. Vervisch Analysis of weakly turbulent diluted-spray flames and combustion regimes, J. Fluid Mech., Volume 537 (2005), pp. 317-347

[15] W.J. Sheu; S.H. Sohrab; G.I. Sivashinsky Effect of rotation on Bunsen flame, Combust. Flame, Volume 79 (1990) no. 2

[16] Y. Sommerer; D. Galley; T. Poinsot; S. Ducruix; S. Veynante Les of flashback and extinction in a swirled burner, J. Turbulence, Volume 5 (2004) no. 1

[17] A. Umemura; K. Tomita Rapid flame propagation in a vortex tube in perspective of vortex breakdown phenomena, Combust. Flame, Volume 125 (2001) no. 1/2, pp. 820-838

[18] T. Hasegawa; R. Nakamichi; S. Nishiki Mechanism of flame evolution along a fine vortex, Combust. Theory Model., Volume 6 (2002) no. 3, pp. 413-424

[19] W.T. Ashurst Combust. Sci. Technol., 112 (1996), pp. 175-185

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed

Cindy Merlin; Pascale Domingo; Luc Vervisch

C. R. Méca (2012)


DNS of premixed turbulent V-flame: coupling spectral and finite difference methods

Raphael Hauguel; Luc Vervisch; Pascale Domingo

C. R. Méca (2005)


Coupling tabulated chemistry with Large Eddy Simulation of turbulent reactive flows

Ronan Vicquelin; Benoît Fiorina; Nasser Darabiha; ...

C. R. Méca (2009)