[Couplage entre chimie tabulée et simulation aux grandes échelles]
Un nouveau modèle est développé pour utiliser des méthodes de chimie tabulée dans la simulation aux grandes échelles de la combustion turbulente prémélangée. Le but est de retrouver la vitesse de propagation de flamme laminaire pour une flamme filtrée lorsque la turbulence en sous maille est négligeable. La structure de la flamme filtrée est reproduite par une flamme laminaire unidimensionnelle filtrée. Un soin particulier est porté à la fermeture des équations de transport de la variable d'avancement de réaction filtrée et d'énergie filtrée. Le modèle est appliqué à des cas unidimensionnelle et bidimensionnelle de flamme laminaire. Ces calculs montrent que la vitesse de flamme et sa structure chimique sont correctement reproduites lorsque le plissement de la flamme est résolu. Le modèle est ensuite étendu à la combustion turbulente en prenant en compte l'effet du plissement de la flamme en sous-maille sur sa propagation. Une simulation aux grandes échelles d'une flamme turbulente tridimensionnelle est finalement réalisée.
A new modeling strategy is developed to introduce tabulated chemistry methods in the LES of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when the subgrid scale turbulence vanishes. The filtered flame structure is mapped by 1D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed. The methodology is applied to 1D and 2D filtered laminar flames. These computations show the capability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by introducing subgrid scale wrinkling effects on the flame front propagation. Finally, the LES of a 3D turbulent premixed flame is performed.
Mot clés : Combustion, Simulation aux grandes échelles, Combustion turbulente prémélangée, Flamme filtrée
Ronan Vicquelin 1, 2 ; Benoît Fiorina 1 ; Nasser Darabiha 1 ; Olivier Gicquel 1 ; Denis Veynante 1
@article{CRMECA_2009__337_6-7_329_0, author = {Ronan Vicquelin and Beno{\^\i}t Fiorina and Nasser Darabiha and Olivier Gicquel and Denis Veynante}, title = {Coupling tabulated chemistry with {Large} {Eddy} {Simulation} of turbulent reactive flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {329--339}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.011}, language = {en}, }
TY - JOUR AU - Ronan Vicquelin AU - Benoît Fiorina AU - Nasser Darabiha AU - Olivier Gicquel AU - Denis Veynante TI - Coupling tabulated chemistry with Large Eddy Simulation of turbulent reactive flows JO - Comptes Rendus. Mécanique PY - 2009 SP - 329 EP - 339 VL - 337 IS - 6-7 PB - Elsevier DO - 10.1016/j.crme.2009.06.011 LA - en ID - CRMECA_2009__337_6-7_329_0 ER -
%0 Journal Article %A Ronan Vicquelin %A Benoît Fiorina %A Nasser Darabiha %A Olivier Gicquel %A Denis Veynante %T Coupling tabulated chemistry with Large Eddy Simulation of turbulent reactive flows %J Comptes Rendus. Mécanique %D 2009 %P 329-339 %V 337 %N 6-7 %I Elsevier %R 10.1016/j.crme.2009.06.011 %G en %F CRMECA_2009__337_6-7_329_0
Ronan Vicquelin; Benoît Fiorina; Nasser Darabiha; Olivier Gicquel; Denis Veynante. Coupling tabulated chemistry with Large Eddy Simulation of turbulent reactive flows. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 329-339. doi : 10.1016/j.crme.2009.06.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.011/
[1] Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame, Volume 88 (1992), pp. 239-264
[2] O. Gicquel, N. Darabiha, D. Thévenin, Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, in: Proceedings of the Twenty-Eighth Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 2000, pp. 1901–1908
[3] Modelling non-adiabatic partially-premixed flames using flame prolongation of ILDM, Combust. Theory Modelling, Volume 7 (2003), pp. 449-470
[4] Modelling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame, Volume 127 (2001) no. 3, pp. 2124-2134
[5] Three facets of turbulent combustion modelling: DNS of premixed flame, LES of lifted nonpremixed V-flame and RANS of jet-flame, J. Turbulence, Volume 5 (2004) no. 4, pp. 1-36
[6] Premixed turbulent combustion modelling using tabulated chemistry and PDF, Proc. Combust. Inst., Volume 30 (2005), pp. 867-874
[7] T.D. Butler, P.J. O'Rourke, A numerical method for two-dimensional unsteady reacting flows, in: Proceedings of the 16th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1977, pp. 1503–1515
[8] A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids, Volume 12 (2000) no. 7, pp. 1843-1863
[9] M. Boger, D. Veynante, H. Boughanem, A. Trouvé, Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion, in: Twenty-Seventh Symposium (Int.) on Combustion, The Combustion Institute, 1998, pp. 917–925
[10] Study of a filtered flamelet formulation for large eddy simulation of premixed turbulent flames, Flow Turbulence Combustion, Volume 79 ( Dec. 2007 ) no. 4, pp. 433-454
[11] A consistent level set formulation for large-eddy simulation of premixed turbulent combustion, Combust. Flame, Volume 143 ( Dec. 2005 ) no. 4, pp. 587-598
[12] A level set formulation for premixed combustion LES considering the turbulent flame structure, Combust. Flame, Volume 156 (2009) no. 4, pp. 801-812
[13] Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner, Combust. Flame, Volume 155 (2008), pp. 247-266
[14] Large-eddy simulation of turbulent combustion, Ann. Rev. Fluid Mech., Volume 38 (2006), pp. 453-482
[15] A large-eddy simulation scheme for turbulent reacting flows, Phys. Fluids A – Fluid Dyn., Volume 5 ( Jun. 1993 ) no. 6, pp. 1282-1284
[16] AVBP code: http://www.cerfacs.fr/cfd/avbpcode.php and http://www.cerfacs.fr/cfd/cfdpublications.html, 2008
[17] Development of high-order Taylor–Galerkin schemes for unsteady calculations, J. Comput. Phys., Volume 162 (2000) no. 2, pp. 338-371
[18] Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 1 (1992) no. 101, pp. 104-129
[19] R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, A Fortran program for modelling steady laminar one-dimensional premixed flames, Technical report, Sandia National Laboratories, 1992
[20] Quenching processes and premixed turbulent combustion diagrams, J. Fluid Mech., Volume 228 (1991), pp. 561-605
[21] Theoretical and Numerical Combustion, R.T. Edwards, Inc., 2005
[22] Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow Turbulence Combustion, Volume 62 (1999) no. 3, pp. 183-200
[23] Comparison between LES results and experimental data in reacting flows, J. Turbulence, Volume 7 (2006) no. 35, pp. 1-20
[24] A power-law flame wrinkling model for LES of premixed turbulent combustion, part I: Non-dynamic formulation, Combust. Flame, Volume 131 (2002) no. 1/2, pp. 159-180
[25] A power-law flame wrinkling model for LES of premixed turbulent combustion, part I: Dynamic formulation, Combust. Flame, Volume 131 (2002) no. 1/2, pp. 181-197
[26] A flame surface density approach to large-eddy simulation of premixed turbulent combustion, Proc. Combust. Inst., Volume 28 (2000), pp. 51-58
[27] Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst., Volume 31 (2007), pp. 3059-3066
Cité par Sources :
Commentaires - Politique