[Sédimentation de petites particules : comment un problème si simple peut-il être si compliqué ?]
La sédimentation de particules à bas nombre de Reynolds peut être considérée comme un des exemples les plus simples d'écoulement de suspension. Et pourtant ce problème est compliqué à cause de la dominance des interactions hydrodynamiques multicorps à longues portées. Trois situations illustreront cette difficulté : la sédimentation d'une suspension de sphères, de particules anisotropes (des fibres) et d'un nuage sphérique de particules.
Although sedimentation can be considered as one of the simplest examples of suspension flow, much remains unknown about the fundamental properties of sedimenting suspensions. The problem that one encounters lies in the long range nature of the multibody hydrodynamic interactions between particles. This will be illustrated for sedimenting suspensions of spheres, of non-spherical particles such as fibers, and for sedimenting clouds of particles.
Mot clés : Mécanique des fluides, Sédimentation, Interactions hydrodynamiques multicorps, Bas nombre de Reynolds
Élisabeth Guazzelli 1
@article{CRMECA_2006__334_8-9_539_0, author = {\'Elisabeth Guazzelli}, title = {Sedimentation of small particles: how can such a simple problem be so difficult?}, journal = {Comptes Rendus. M\'ecanique}, pages = {539--544}, publisher = {Elsevier}, volume = {334}, number = {8-9}, year = {2006}, doi = {10.1016/j.crme.2006.07.009}, language = {en}, }
Élisabeth Guazzelli. Sedimentation of small particles: how can such a simple problem be so difficult?. Comptes Rendus. Mécanique, Volume 334 (2006) no. 8-9, pp. 539-544. doi : 10.1016/j.crme.2006.07.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.07.009/
[1] Sedimentation in a dilute dispersion of spheres, J. Fluid Mech., Volume 52 (1972), pp. 245-268
[2] Hindered settling and hydrodynamic dispersion in quiescent sedimenting suspension, Int. J. Multiphase Flow, Volume 14 (1988), pp. 533-546
[3] Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres, Phys. Fluids, Volume 7 (1995), pp. 12-23
[4] Variance in the sedimenting speed of a suspension, Phys. Fluids, Volume 28 (1985), pp. 759-760
[5] Sedimentation of small particles (E. Guyon; J.-P. Nadal; Y. Pomeau, eds.), Disorder and Mixing, Kluwer Academic, Dordrecht, 1988, pp. 153-161
[6] Effect of the vessel size on the hydrodynamic diffusion of sedimenting spheres, Phys. Fluids, Volume 7 (1995), pp. 3-5
[7] Long-range correlations in sedimentation, Phys. Rev. Lett., Volume 79 (1997), pp. 2574-2577
[8] Evolution of particle-velocity correlations in sedimentation, Phys. Fluids, Volume 13 (2001), pp. 1537-1540
[9] Screening mechanisms in sedimenting suspension, J. Fluid Mech., Volume 224 (1991), pp. 275-303
[10] Screened and unscreened phases in sedimenting suspensions, Phys. Rev. Lett., Volume 81 (1998), pp. 5944-5947
[11] Analogies between colloidal sedimentation and turbulent convection at high Prandtl numbers, Phys. Rev. E, Volume 58 (1998), p. R6931
[12] Screening mechanisms in sedimentation, Phys. Fluids, Volume 11 (1999), pp. 754-772
[13] Decay of velocity fluctuations in a stably stratified suspension, Phys. Fluids, Volume 12 (2000), pp. 1619-1621
[14] Effect of container walls on the velocity fluctuations of sedimenting spheres, Phys. Rev. Lett., Volume 88 (2002), p. 048301
[15] Nonuniversal velocity fluctuations of sedimenting particles, Phys. Rev. Lett., Volume 89 (2002), p. 054501
[16] A model for velocity fluctuations in sedimentation, J. Fluid Mech., Volume 501 (2004), pp. 71-104
[17] Evolution of fluctuations in a suspension sedimenting in a container bounded by horizontal walls, Phys. Fluids, Volume 16 (2004), pp. 3086-3093
[18] Microstructure in a settling suspension of hard spheres, Phys. Rev. Lett. E, Volume 69 (2004), p. 050401
[19] Sedimentation of hard-sphere suspensions at low Reynolds number, J. Fluid Mech., Volume 525 (2005), pp. 73-104
[20] Spreading fronts and fluctuations in sedimentation, Phys. Fluids, Volume 15 (2003), pp. 1875-1887
[21] D. Chehata, L. Bergougnoux, É. Guazzelli, E.J. Hinch, in preparation
[22] The instability of a dispersion of sedimenting spheroids, J. Fluid Mech., Volume 209 (1989), pp. 521-542
[23] Experimental investigation of the sedimentation of a dilute fiber suspension, Phys. Rev. Lett., Volume 77 (1996), pp. 290-293
[24] Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibres, J. Fluid Mech., Volume 384 (1999), pp. 133-158
[25] Large-scale streamers in the sedimentation of a dilute fiber suspension, Phys. Rev. Lett., Volume 95 (2005), p. 164506
[26] A numerical study of the sedimentation of fibre suspension, J. Fluid Mech., Volume 376 (1998), pp. 149-182
[27] Dynamic simulations of the inhomogeneous sedimentation of rigid fibres, J. Fluid Mech., Volume 468 (2002), pp. 205-237
[28] A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: The sedimentation of fibers, Phys. Fluids, Volume 17 (2005), p. 033301
[29] The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation, J. Fluid Mech., Volume 553 (2006), pp. 347-388
[30] Break-up of a falling drop containing dispersed particles, J. Fluid Mech., Volume 340 (1997), pp. 161-175
[31] Spherical cloud of point particles falling in a viscous fluid, Phys. Fluids, Volume 18 (2006), p. 038104
[32] Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations, J. Fluid Mech., Volume 447 (2001), pp. 299-336
Cité par Sources :
Commentaires - Politique