[Sédimentation de petites particules : comment un problème si simple peut-il être si compliqué ?]
Although sedimentation can be considered as one of the simplest examples of suspension flow, much remains unknown about the fundamental properties of sedimenting suspensions. The problem that one encounters lies in the long range nature of the multibody hydrodynamic interactions between particles. This will be illustrated for sedimenting suspensions of spheres, of non-spherical particles such as fibers, and for sedimenting clouds of particles.
La sédimentation de particules à bas nombre de Reynolds peut être considérée comme un des exemples les plus simples d'écoulement de suspension. Et pourtant ce problème est compliqué à cause de la dominance des interactions hydrodynamiques multicorps à longues portées. Trois situations illustreront cette difficulté : la sédimentation d'une suspension de sphères, de particules anisotropes (des fibres) et d'un nuage sphérique de particules.
Mots-clés : Mécanique des fluides, Sédimentation, Interactions hydrodynamiques multicorps, Bas nombre de Reynolds
Élisabeth Guazzelli 1
@article{CRMECA_2006__334_8-9_539_0, author = {\'Elisabeth Guazzelli}, title = {Sedimentation of small particles: how can such a simple problem be so difficult?}, journal = {Comptes Rendus. M\'ecanique}, pages = {539--544}, publisher = {Elsevier}, volume = {334}, number = {8-9}, year = {2006}, doi = {10.1016/j.crme.2006.07.009}, language = {en}, }
Élisabeth Guazzelli. Sedimentation of small particles: how can such a simple problem be so difficult?. Comptes Rendus. Mécanique, Observation, analysis and modelling in complex fluid media, Volume 334 (2006) no. 8-9, pp. 539-544. doi : 10.1016/j.crme.2006.07.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.07.009/
[1] Sedimentation in a dilute dispersion of spheres, J. Fluid Mech., Volume 52 (1972), pp. 245-268
[2] Hindered settling and hydrodynamic dispersion in quiescent sedimenting suspension, Int. J. Multiphase Flow, Volume 14 (1988), pp. 533-546
[3] Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres, Phys. Fluids, Volume 7 (1995), pp. 12-23
[4] Variance in the sedimenting speed of a suspension, Phys. Fluids, Volume 28 (1985), pp. 759-760
[5] Sedimentation of small particles (E. Guyon; J.-P. Nadal; Y. Pomeau, eds.), Disorder and Mixing, Kluwer Academic, Dordrecht, 1988, pp. 153-161
[6] Effect of the vessel size on the hydrodynamic diffusion of sedimenting spheres, Phys. Fluids, Volume 7 (1995), pp. 3-5
[7] Long-range correlations in sedimentation, Phys. Rev. Lett., Volume 79 (1997), pp. 2574-2577
[8] Evolution of particle-velocity correlations in sedimentation, Phys. Fluids, Volume 13 (2001), pp. 1537-1540
[9] Screening mechanisms in sedimenting suspension, J. Fluid Mech., Volume 224 (1991), pp. 275-303
[10] Screened and unscreened phases in sedimenting suspensions, Phys. Rev. Lett., Volume 81 (1998), pp. 5944-5947
[11] Analogies between colloidal sedimentation and turbulent convection at high Prandtl numbers, Phys. Rev. E, Volume 58 (1998), p. R6931
[12] Screening mechanisms in sedimentation, Phys. Fluids, Volume 11 (1999), pp. 754-772
[13] Decay of velocity fluctuations in a stably stratified suspension, Phys. Fluids, Volume 12 (2000), pp. 1619-1621
[14] Effect of container walls on the velocity fluctuations of sedimenting spheres, Phys. Rev. Lett., Volume 88 (2002), p. 048301
[15] Nonuniversal velocity fluctuations of sedimenting particles, Phys. Rev. Lett., Volume 89 (2002), p. 054501
[16] A model for velocity fluctuations in sedimentation, J. Fluid Mech., Volume 501 (2004), pp. 71-104
[17] Evolution of fluctuations in a suspension sedimenting in a container bounded by horizontal walls, Phys. Fluids, Volume 16 (2004), pp. 3086-3093
[18] Microstructure in a settling suspension of hard spheres, Phys. Rev. Lett. E, Volume 69 (2004), p. 050401
[19] Sedimentation of hard-sphere suspensions at low Reynolds number, J. Fluid Mech., Volume 525 (2005), pp. 73-104
[20] Spreading fronts and fluctuations in sedimentation, Phys. Fluids, Volume 15 (2003), pp. 1875-1887
[21] D. Chehata, L. Bergougnoux, É. Guazzelli, E.J. Hinch, in preparation
[22] The instability of a dispersion of sedimenting spheroids, J. Fluid Mech., Volume 209 (1989), pp. 521-542
[23] Experimental investigation of the sedimentation of a dilute fiber suspension, Phys. Rev. Lett., Volume 77 (1996), pp. 290-293
[24] Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibres, J. Fluid Mech., Volume 384 (1999), pp. 133-158
[25] Large-scale streamers in the sedimentation of a dilute fiber suspension, Phys. Rev. Lett., Volume 95 (2005), p. 164506
[26] A numerical study of the sedimentation of fibre suspension, J. Fluid Mech., Volume 376 (1998), pp. 149-182
[27] Dynamic simulations of the inhomogeneous sedimentation of rigid fibres, J. Fluid Mech., Volume 468 (2002), pp. 205-237
[28] A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: The sedimentation of fibers, Phys. Fluids, Volume 17 (2005), p. 033301
[29] The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation, J. Fluid Mech., Volume 553 (2006), pp. 347-388
[30] Break-up of a falling drop containing dispersed particles, J. Fluid Mech., Volume 340 (1997), pp. 161-175
[31] Spherical cloud of point particles falling in a viscous fluid, Phys. Fluids, Volume 18 (2006), p. 038104
[32] Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations, J. Fluid Mech., Volume 447 (2001), pp. 299-336
- Accelerating particle aggregation in acoustic levitation by collective effects: Application to cost-effective ultrasonic harvesting of microalgae, Physical Review Applied, Volume 23 (2025) no. 1 | DOI:10.1103/physrevapplied.23.014006
- Velocity fluctuations of submicron- and micron-sized particles in suspension studied by dynamic ultrasound scattering, Physics of Fluids, Volume 36 (2024) no. 11 | DOI:10.1063/5.0240327
- Settling of localized particle plumes in a quiescent water tank, Physical Review Fluids, Volume 8 (2023) no. 2 | DOI:10.1103/physrevfluids.8.024301
- Lack of Plasma-like Screening Mechanism in Sedimentation of a Non-Brownian Suspension, Symmetry, Volume 14 (2022) no. 1, p. 63 | DOI:10.3390/sym14010063
- Nanoparticle sizing by focused-beam dynamic ultrasound scattering method, Ultrasonics, Volume 126 (2022), p. 106807 | DOI:10.1016/j.ultras.2022.106807
- A scalable computational platform for particulate Stokes suspensions, Journal of Computational Physics, Volume 416 (2020), p. 109524 | DOI:10.1016/j.jcp.2020.109524
- Sedimentation of large particles in a suspension of colloidal rods, Physics of Fluids, Volume 32 (2020) no. 5 | DOI:10.1063/5.0006076
- An error bound for the slender body approximation of a thin, rigid fiber sedimenting in Stokes flow, Research in the Mathematical Sciences, Volume 7 (2020) no. 2 | DOI:10.1007/s40687-020-00206-7
- Particle size distribution analysis of oil-in-water emulsions using static and dynamic ultrasound scattering techniques, Ultrasonics, Volume 108 (2020), p. 106117 | DOI:10.1016/j.ultras.2020.106117
- Settling tracer spheroids in vertical turbulent channel flows, International Journal of Multiphase Flow, Volume 118 (2019), p. 173 | DOI:10.1016/j.ijmultiphaseflow.2019.06.012
- On Dynamic Interactions Between Body Motion and Fluid Motion, Mathematics Applied to Engineering, Modelling, and Social Issues, Volume 200 (2019), p. 45 | DOI:10.1007/978-3-030-12232-4_2
- Dense Particle Clouds in Laboratory Experiments in Context of Drafting and Streaming Instability, The Astrophysical Journal, Volume 872 (2019) no. 1, p. 3 | DOI:10.3847/1538-4357/aafd35
- Nanotechnologies for site specific drug delivery: Changing the narrative, International Journal of Pharmaceutics, Volume 551 (2018) no. 1-2, p. 1 | DOI:10.1016/j.ijpharm.2018.08.023
- Measurement of the average shear rate around a microparticle in the shear thinning medium with laser tweezers, Particulate Science and Technology, Volume 36 (2018) no. 5, p. 529 | DOI:10.1080/02726351.2016.1267288
- Two-dimensional flow of driven particles: a microfluidic pathway to the non-equilibrium frontier, Chemical Society Reviews, Volume 46 (2017) no. 18, p. 5620 | DOI:10.1039/c7cs00374a
- Structures and dynamics of microparticles in suspension studied using ultrasound scattering techniques, Polymer International, Volume 66 (2017) no. 2, p. 175 | DOI:10.1002/pi.5100
- Dynamic sound scattering: Field fluctuation spectroscopy with singly scattered ultrasound in the near and far fields, The Journal of the Acoustical Society of America, Volume 140 (2016) no. 3, p. 1992 | DOI:10.1121/1.4962556
- Sedimentation of spheroidal bodies near walls in viscous fluids: glancing, reversing, tumbling and sliding, Journal of Fluid Mechanics, Volume 772 (2015), p. 600 | DOI:10.1017/jfm.2015.222
- Effect of electrostatic interactions on the velocity fluctuations of settling microspheres, Physics of Fluids, Volume 27 (2015) no. 1 | DOI:10.1063/1.4906042
- Fast Ewald summation for Stokesian particle suspensions, International Journal for Numerical Methods in Fluids, Volume 76 (2014) no. 10, p. 669 | DOI:10.1002/fld.3953
- The physics of 2D microfluidic droplet ensembles, Physics Reports, Volume 516 (2012) no. 3, p. 103 | DOI:10.1016/j.physrep.2012.02.003
- Simulations of dilute sedimenting suspensions at finite-particle Reynolds numbers, Physics of Fluids, Volume 24 (2012) no. 12 | DOI:10.1063/1.4770310
- Collective motion of microspheres in suspensions observed by phase-mode dynamic ultrasound scattering technique, Ultrasonics, Volume 52 (2012) no. 5, p. 628 | DOI:10.1016/j.ultras.2012.01.002
- The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform, Lab on a Chip, Volume 10 (2010) no. 8, p. 1030 | DOI:10.1039/b925456k
- ON INTERACTION BETWEEN FALLING BODIES AND THE SURROUNDING FLUID, Mathematika, Volume 56 (2010) no. 1, p. 140 | DOI:10.1112/s0025579309000473
- Epoxy/steel fiber composites—A simple model to predict the fiber sedimentation, Polymer Composites, Volume 31 (2010) no. 8, p. 1378 | DOI:10.1002/pc.20923
- Sedimentation of nanocarbon materials in organic solvents, Materials Chemistry and Physics, Volume 107 (2008) no. 2-3, p. 322 | DOI:10.1016/j.matchemphys.2007.07.019
- Preparation and luminescence of nano-sized In2O3and rare-earth co-doped SiO2thin films, Nanotechnology, Volume 19 (2008) no. 9, p. 095709 | DOI:10.1088/0957-4484/19/9/095709
Cité par 28 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier